AA

Tracheostomy

Download as a PDF

Between 21% and 77% of patients with cervical SCI require a tracheostomy, with the variability of these numbers being due to the influence of at least 16 other factors (e.g., severity of the injury, presence of other injuries, admission Glasgow Coma Scale score, age, etc.) (Branco et al. 2011; Como et al., 2005). The interactions of these other parameters make it difficult to establish clear criteria for who should receive a tracheostomy. Identifying when a tracheostomy should be performed is also important to determine, as timing may impact a patient’s recovery with regards to developing complications and weaning from ventilation. In a systematic review of non-SCI patients who required tracheostomies, Griffiths et al. (2005) concluded that individuals who received an early tracheostomy did not experience fewer complications but did experience a shorter duration of mechanical ventilation. The timing of tracheostomy following spinal fixation should also be considered. Currently, the typical time is 1-2 weeks post-surgery, but this timing lacks conclusive evidence (Galeiras Vázquez et al. 2013). In addition to who should receive a tracheostomy and when it should be performed, there is also controversy surrounding whether tracheostomies are always beneficial, effective in ventilator weaning, and result in a reduced number of pulmonary complications. In fact, complications resulting from tracheostomies, such as tracheal stenosis, occur in up to 6% of patients (Lissauer, 2013), so the risks and benefits must be evaluated. Other complications have been reported to include tightness at the scar location, difficulty swallowing, and cosmetic inconveniences (Biering-Sorensen & Biering-Sorensen, 1992). Several studies have retrospectively examined the predictors for needing a tracheostomy and complications associated with the procedure; these are presented in Table 3.

There are two techniques for tracheostomy: surgical (open) and percutaneous. Surgical tracheostomy is the traditional technique that requires opening up the entire trachea to insert the tube. Percutaneous tracheostomy is an alternative procedure that was first developed in the late 1950s and can be performed at the patient’s bedside with fewer materials (Gysin et al. 1999). Percutaneous tracheostomy is less invasive and involves inserting a tracheostomy tube through the skin without directly visualizing the trachea. Due to its less invasive nature, this procedure was thought to be associated with fewer complications and infections, although this relationship is unclear (Gysin et al. 1999). Lastly, patients who required a tracheostomy had longer length of stay in hospitals as well as higher hospital costs (Winslow et al., 2002).

Several studies have investigated factors associated with needing a tracheostomy in acute SCI patients, such as higher injury severity and complete lesions (Leelapattana et al. 2012; McCully et al. 2014; Menaker et al. 2013; O’Keeffe et al. 2004; Yugue et al. 2012), as well as a cervical level of injury (Biering-Sorensen & Biering-Sorensen, 1992; McCully et al. 2014; Romero-Ganuza et al. 2011a; Seidl et al. 2010; Yugue et al. 2012). Other reported factors include older age (Harrop et al. 2004; Yugue et al. 2012) and a lower ASIA motor grade upon hospital admission (Menaker et al. 2013).

Table 3 Evaluation of the Use of Tracheostomy during Acute

Discussion

Tracheostomy is believed to facilitate weaning because it reduces the effort required to breathe (Peterson et al. 1994). Several studies examined the effect of tracheostomy on duration of mechanical ventilation. Among studies that did not stratify for time, tracheostomy was consistently reported to prolong mechanical ventilation (Berney et al. 2002; Leelapattana et al. 2012; McCully et al. 2014).

The influence of tracheostomy procedures on the development of respiratory complications has also been examined by a number of studies. Patients who have had a tracheostomy have been reported to have fewer pulmonary complications when compared to patients who have not had a tracheostomy (Leelapattana et al. 2012). Regarding type of tracheostomy, Sustic et al. (2002) compared percutaneous dilational tracheostomy with surgical tracheostomy, investigating the development of perioperative and postoperative complications associated with each procedure. The authors found that no patients, regardless of intervention received, developed any major complication in relation to tracheostomy, however the percutaneous dilational tracheostomy was a significantly shorter procedure. Kornblith et al. (2014) found that patients who received a tracheostomy were associated with a 14.1-fold higher odds of requiring prolonged mechanical ventilation (p<0.05) compared to patients who did not receive a tracheostomy.

Conclusion

There is level 2 evidence (from one RCT; Sustic et al., 2002) that percutaneous dilational tracheostomies are a significantly shorter procedure and have fewer pulmonary complications compared to surgical tracheostomies for individuals with acute SCI.

There is level 2 evidence (from one cohort study; Leelapattana et al., 2012) that tracheostomies can reduce the number of pulmonary complications in individuals with acute SCI compared to late or no tracheostomy.

There is level 2 evidence (from one cohort study; Romero-Ganuza et al., 2011a) that tracheostomies performed directly after spinal fixation surgery do not increase the rate of surgical wound infection compared to non-immediate tracheostomies in acute SCI individuals.

There is level 3 evidence (from one case control study; McCully et al., 2014, and one case series; Kornblith et al., 2014) that acute SCI individuals who receive a tracheostomy may spend more days on a ventilator than those who do not.

There is level 3 evidence (from one case control study; Berney et al., 2011) that acute SCI individuals who receive a tracheostomy, compared to those who are extubated, may have more pulmonary secretions, lower gas exchange, and lower forced vital capacity.

There is level 4 evidence (from one case series; O’Keeffe et al., 2004) that tracheostomies in acute SCI individuals may not increase the risk of neurologic deterioration or surgical site infection.

  • Tracheostomies can reduce the number of pulmonary complications in acute SCI individuals compared to those not receiving this procedure, and they may result in reduced forced vital capacity and lower gas exchange compared to extubation.

    Tracheostomies are associated with an increase in the number of days acute SCI individuals spend on ventilators.