References
Aksnes, A. K., Hjeltnes, N., Wahlstrom, E. O., Katz, A., Zierath, J. R., & Wallberg-Henriksson, H. (1996, Sep). Intact glucose transport in morphologically altered denervated skeletal muscle from quadriplegic patients. Am J Physiol, 271(3 Pt 1), E593-600. https://doi.org/10.1152/ajpendo.1996.271.3.E593
Alexeeva, N., Sames, C., Jacobs, P. L., Hobday, L., DiStasio, M. M., Mitchell, S. A., & Calancie, B. (2011). Comparison of training methods to improve walking in persons with chronic spinal cord injury: A randomized clinical trial. Journal of Spinal Cord Medicine, 34(4), 362-379. https://doi.org/http://dx.doi.org/10.1179/2045772311Y.0000000018
Anderson, K. D. (2004, Oct). Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma, 21(10), 1371-1383. https://doi.org/10.1089/neu.2004.21.1371
Bakkum, A. J. T., De Groot, S., Stolwijk-Swuste, J. M., Van Kuppevelt, D. J., Van Der Woude, L. H. V., & Janssen, T. W. J. (2015). Effects of hybrid cycling versus handcycling on wheelchair-specific fitness and physical activity in people with long-term spinal cord injury: A 16-week randomized controlled trial. Spinal Cord, 53(5), 395-401. https://doi.org/http://dx.doi.org/10.1038/sc.2014.237
Ballaz, L., Fusco, N., Cretual, A., Langella, B., & Brissot, R. (2008). Peripheral Vascular Changes After Home-Based Passive Leg Cycle Exercise Training in People With Paraplegia: A Pilot Study. Archives of physical medicine and rehabilitation, 89(11), 2162-2166. https://doi.org/http://dx.doi.org/10.1016/j.apmr.2008.04.018
Battram, D. S., Bugaresti, J., Gusba, J., & Graham, T. E. (2007a, Jan). Acute caffeine ingestion does not impair glucose tolerance in persons with tetraplegia. J Appl Physiol, 102(1), 374-381. https://doi.org/10.1152/japplphysiol.00901.2006
Battram, D. S., Bugaresti, J., Gusba, J., & Graham, T. E. (2007b, Jan). Acute caffeine ingestion does not impair glucose tolerance in persons with tetraplegia. Journal of Applied Physiology, 102(1), 374-381. https://doi.org/10.1152/japplphysiol.00901.2006
Bauman, W. A., Adkins, R. H., Spungen, A. M., & Waters, R. L. (1999, Nov). The effect of residual neurological deficit on oral glucose tolerance in persons with chronic spinal cord injury. Spinal Cord, 37(11), 765-771. https://doi.org/DOI 10.1038/sj.sc.3100893
Bauman, W. A., Spungen, A. M., Zhong, Y. G., Rothstein, J. L., Petry, C., & Gordon, S. K. (1992, Oct). Depressed serum high density lipoprotein cholesterol levels in veterans with spinal cord injury. Paraplegia, 30(10), 697-703. https://doi.org/10.1038/sc.1992.136
Berry, H. R., Kakebeeke, T. H., Donaldson, N., Perret, C., & Hunt, K. J. (2012). Energetics of paraplegic cycling: adaptations to 12 months of high volume training. Technology and health care : official journal of the European Society for Engineering and Medicine, 20(2), 73-84. https://doi.org/https://dx.doi.org/10.3233/THC-2011-0656
Berry, H. R., Perret, C., Saunders, B. A., Kakebeeke, T. H., Donaldson, N. D. N., Allan, D. B., & Hunt, K. J. (2008). Cardiorespiratory and power adaptations to stimulated cycle training in paraplegia. Medicine and Science in Sports and Exercise, 40(9), 1573-1580. https://doi.org/http://dx.doi.org/10.1249/MSS.0b013e318176b2f4
Betancourt, L., Cowan, R. E., Chang, A., & Irwin, R. (2020). Case-Control Study of Ultrasound Evaluation of Acute Median Nerve Response to Upper Extremity Circuit Training in Spinal Cord Injury. Archives of physical medicine and rehabilitation, 101(11), 1898-1905. https://doi.org/http://dx.doi.org/10.1016/j.apmr.2020.05.008
Biering-Sørensen, F., Biering-Sørensen, T., Liu, N., Malmqvist, L., Wecht, J. M., & Krassioukov, A. (2018). Alterations in cardiac autonomic control in spinal cord injury. Autonomic Neuroscience, 209, 4-18.
Bougenot, M. P., Tordi, N., Betik, A. C., Martin, X., Le Foll, D., Parratte, B., Lonsdorfer, J., & Rouillon, J. D. (2003). Effects of a wheelchair ergometer training programme on spinal cord-injured persons. Spinal Cord, 41(8), 451-456. https://www.nature.com/articles/3101475.pdf
Brenes, G., Dearwater, S., Shapera, R., LaPorte, R. E., & Collins, E. (1986, Jul). High density lipoprotein cholesterol concentrations in physically active and sedentary spinal cord injured patients [Research Support, Non-U.S. Gov’t]. Arch Phys Med Rehabil, 67(7), 445-450.
Bresnahan, J. J., Farkas, G. J., Clasey, J. L., Yates, J. W., & Gater, D. R. (2019). Arm crank ergometry improves cardiovascular disease risk factors and community mobility independent of body composition in high motor complete spinal cord injury. The journal of spinal cord medicine, 42(3), 272-280. https://doi.org/10.1080/10790268.2017.1412562
Brizuela, G., Sinz, S., Aranda, R., & Martinez-Navarro, I. (2020). The effect of arm-crank exercise training on power output, spirometric and cardiac function and level of autonomy in persons with tetraplegia. European journal of sport science, 20(7), 926-934. https://doi.org/http://dx.doi.org/10.1080/17461391.2019.1674927
Brurok, B., Helgerud, J., Karlsen, T., Leivseth, G., & Hoff, J. (2011). Effect of aerobic high-intensity hybrid training on stroke volume and peak oxygen consumption in men with spinal cord injury. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists, 90(5), 407-414.
Buchholz, A. C., & Bugaresti, J. M. (2005). A review of body mass index and waist circumference as markers of obesity and coronary heart disease risk in persons with chronic spinal cord injury. Spinal Cord, 43(9), 513-518. 15824757 (NOT IN FILE)
Buchholz, A. C., Martin Ginis, K. A., Bray, S. R., Craven, B. C., Hicks, A. L., Hayes, K. C., Latimer, A. E., McColl, M. A., Potter, P. J., & Wolfe, D. L. (2009, Aug). Greater daily leisure time physical activity is associated with lower chronic disease risk in adults with spinal cord injury. Appl Physiol Nutr Metab, 34(4), 640-647. https://doi.org/10.1139/h09-050
Carpenter, R. S., Marbourg, J. M., Brennan, F. H., Mifflin, K. A., Hall, J. C. E., Jiang, R. R., Mo, X. M., Karunasiri, M., Burke, M. H., Dorrance, A. M., & Popovich, P. G. (2020, Jul 24). Spinal cord injury causes chronic bone marrow failure. Nat Commun, 11(1), 3702. https://doi.org/10.1038/s41467-020-17564-z
Carty, A., McCormack, K., Coughlan, G. F., Crowe, L., & Caulfield, B. (2012). Increased aerobic fitness after neuromuscular electrical stimulation training in adults with spinal cord injury. Archives of physical medicine and rehabilitation, 93(5), 790-795. https://doi.org/http://dx.doi.org/10.1016/j.apmr.2011.10.030
Carvalho, D. C., de Cassia Zanchetta, M., Sereni, J. M., & Cliquet, A. (2005, Jul). Metabolic and cardiorespiratory responses of tetraplegic subjects during treadmill walking using neuromuscular electrical stimulation and partial body weight support. Spinal Cord, 43(7), 400-405. https://doi.org/10.1038/sj.sc.3101730
Chen, Y., Henson, S., Jackson, A. B., & Richards, J. S. (2006). Obesity intervention in persons with spinal cord injury. Spinal Cord, 44(2), 82-91. https://doi.org/10.1038/sj.sc.3101818
Cheung, E. Y. Y., Yu, K. K. K., Kwan, R. L. C., Ng, C. K. M., Chau, R. M. W., & Cheing, G. L. Y. (2019). Effect of EMG-biofeedback robotic-assisted body weight supported treadmill training on walking ability and cardiopulmonary function on people with subacute spinal cord injuries – A randomized controlled trial. BMC Neurology, 19(1), 140. https://doi.org/http://dx.doi.org/10.1186/s12883-019-1361-z
Chilibeck, P. D., Bell, G., Jeon, J., Weiss, C. B., Murdoch, G., MacLean, I., Ryan, E., & Burnham, R. (1999a, Nov). Functional electrical stimulation exercise increases GLUT-1 and GLUT-4 in paralyzed skeletal muscle. Metabolism-Clinical and Experimental, 48(11), 1409-1413. https://doi.org/Doi 10.1016/S0026-0495(99)90151-8
Chilibeck, P. D., Bell, G., Jeon, J., Weiss, C. B., Murdoch, G., MacLean, I., Ryan, E., & Burnham, R. (1999b, Nov). Functional electrical stimulation exercise increases GLUT-1 and GLUT-4 in paralyzed skeletal muscle. Metab Clin Exp, 48(11), 1409-1413. https://doi.org/Doi 10.1016/S0026-0495(99)90151-8
Cirnigliaro, C. M., LaFountaine, M. F., Dengel, D. R., Bosch, T. A., Emmons, R. R., Kirshblum, S. C., Sauer, S., Asselin, P., Spungen, A. M., & Bauman, W. A. (2015, Sep). Visceral adiposity in persons with chronic spinal cord injury determined by dual energy X-ray absorptiometry. Obesity, 23(9), 1811-1817. https://doi.org/10.1002/oby.21194
Claydon, V. E., & Krassioukov, A. V. (2006). Orthostatic hypotension and autonomic pathways after spinal cord injury. Journal of neurotrauma, 23(12), 1713-1725.
Collins, H. L., Rodenbaugh, D. W., & DiCarlo, S. E. (2006). Spinal cord injury alters cardiac electrophysiology and increases the susceptibility to ventricular arrhythmias. Progress in brain research, 152, 275-288.
Consensus statement on the definition of orthostatic hypotension, pure autonomic failure, and multiple system atrophy. The Consensus Committee of the American Autonomic Society and the American Academy of Neurology. (1996, May). Neurology, 46(5), 1470. https://doi.org/10.1212/wnl.46.5.1470
Cooney, M. M., & Walker, J. B. (1986). Hydraulic resistance exercise benefits cardiovascular fitness of spinal cord injured. Medicine and Science in Sports and Exercise, 18(5), 522-525.
Crameri, R. M., Weston, A., Climstein, M., Davis, G. M., & Sutton, J. R. (2002, Oct). Effects of electrical stimulation-induced leg training on skeletal muscle adaptability in spinal cord injury. Scand J Med Sci Sports, 12(5), 316-322. https://doi.org/10.1034/j.1600-0838.2002.20106.x
de Carvalho, D. C., & Cliquet, A., Jr. (2005, Nov). Energy expenditure during rest and treadmill gait training in quadriplegic subjects. Spinal Cord, 43(11), 658-663. https://doi.org/10.1038/sj.sc.3101776
de Carvalho, D. C., Martins, C. L., Cardoso, S. D., & Cliquet, A. (2006, Jan). Improvement of metabolic and cardiorespiratory responses through treadmill gait training with neuromuscular electrical stimulation in quadriplegic subjects. Artif Organs, 30(1), 56-63. https://doi.org/10.1111/j.1525-1594.2006.00180.x
De Groot, P. C. E., Hjeltnes, N., Heijboer, A. C., Stal, W., & Birkeland, K. (2003). Effect of training intensity on physical capacity, lipid profile and insulin sensitivity in early rehabilitation of spinal cord injured individuals. Spinal Cord, 41(12), 673-679. https://doi.org/http://dx.doi.org/10.1038/sj.sc.3101534
DiCarlo, S. E. (1988). Effect of arm ergometry training on wheelchair propulsion endurance of individuals with quadriplegia. Physical therapy, 68(1), 40-44. https://doi.org/http://dx.doi.org/10.1093/ptj/68.1.40
DiPiro, N. D., Embry, A. E., Fritz, S. L., Middleton, A., Krause, J. S., & Gregory, C. M. (2016, Sep). Effects of aerobic exercise training on fitness and walking-related outcomes in ambulatory individuals with chronic incomplete spinal cord injury. Spinal Cord, 54(9), 675-681. https://doi.org/10.1038/sc.2015.212
Ditor, D. S., Hamilton, S., Tarnopolsky, M. A., Green, H. J., Craven, B. C., Parise, G., & Hicks, A. L. (2004, Jan). Na+,K+-ATPase concentration and fiber type distribution after spinal cord injury. Muscle & Nerve, 29(1), 38-45. https://doi.org/10.1002/mus.10534
Ditor, D. S., MacDonald, M. J., Kamath, M. V., Bugaresti, J., Adams, M., McCartney, N., & Hicks, A. L. (2005). The effects of body-weight supported treadmill training on cardiovascular regulation in individuals with motor-complete SCI. Spinal Cord, 43(11), 664-673. https://doi.org/http://dx.doi.org/10.1038/sj.sc.3101785
Duckworth, W. C., Jallepalli, P., & Solomon, S. S. (1983a). Glucose-Intolerance in Spinal-Cord Injury. Arch Phys Med Rehabil, 64(3), 107-110. <Go to ISI>://WOS:A1983QF22200003
Duckworth, W. C., Jallepalli, P., & Solomon, S. S. (1983b). Glucose-Intolerance in Spinal-Cord Injury. Archives of Physical Medicine and Rehabilitation, 64(3), 107-110. <Go to ISI>://WOS:A1983QF22200003
Duckworth, W. C., Solomon, S. S., Jallepalli, P., Heckemeyer, C., Finnern, J., & Powers, A. (1980). Glucose-Intolerance Due to Insulin Resistance in Patients with Spinal-Cord Injuries. Diabetes, 29(11), 906-910. https://doi.org/DOI 10.2337/diabetes.29.11.906
Duffell, L. D., Donaldson, N. D., Perkins, T. A., Rushton, D. N., Hunt, K. J., Kakebeeke, T. H., & Newham, D. J. (2008, Oct). Long-term intensive electrically stimulated cycling by spinal cord-injured people: Effect on muscle properties and their relation to power output. Muscle & Nerve, 38(4), 1304-1311. https://doi.org/10.1002/mus.21060
Duran, F. S., Lugo, L., Ramirez, L., & Lic, E. E. (2001). Effects of an exercise program on the rehabilitation of patients with spinal cord injury. Archives of Physical Medicine and Rehabilitation, 82(10), 1349-1354. https://doi.org/http://dx.doi.org/10.1053/apmr.2001.26066
El-Sayed, M. S. (2004). The effects of arm cranking exercise and training on platelet aggregation in male spinal cord individuals. Thrombosis Research, 113(2), 129-136.
El-Sayed, M. S., & Younesian, A. (2005). Lipid profiles are influenced by arm cranking exercise and training in individuals with spinal cord injury. Spinal Cord, 43(5), 299-305. https://doi.org/http://dx.doi.org/10.1038/sj.sc.3101698
Elder, C. P., Apple, D. F., Bickel, C. S., Meyer, R. A., & Dudley, G. A. (2004, Dec). Intramuscular fat and glucose tolerance after spinal cord injury – a cross-sectional study. Spinal Cord, 42(12), 711-716. https://doi.org/10.1038/sj.sc.3101652
Ellenbroek, D., Kressler, J., Cowan, R. E., Burns, P. A., Mendez, A. J., & Nash, M. S. (2014, Mar 12). Effects of prandial challenge on triglyceridemia, glycemia, and pro-inflammatory activity in persons with chronic paraplegia. J Spinal Cord Med. https://doi.org/10.1179/2045772314Y.0000000199
Emmons, R. R., Garber, C. E., Cirnigliaro, C. M., Moyer, J. M., Kirshblum, S. C., Galea, M. D., Spungen, A. M., & Bauman, W. A. (2010, Oct). The Influence of Visceral Fat on the Postprandial Lipemic Response in Men with Paraplegia. J Am Coll Nutr, 29(5), 476-481. <Go to ISI>://WOS:000287010500005
Faghri, P. D., Glaser, R. M., & Figoni, S. F. (1992). Functional electrical stimulation leg cycle ergometer exercise: Training effects on cardiorespiratory responses of spinal cord injured subjects at rest and during submaximal exercise. Archives of physical medicine and rehabilitation, 73(11), 1085-1093.
Farkas, G. J., Gorgey, A. S., Dolbow, D. R., Berg, A. S., & Gater, D. R. (2019). Sex dimorphism in the distribution of adipose tissue and its influence on proinflammatory adipokines and cardiometabolic profiles in motor complete spinal cord injury. J Spinal Cord Med, 42(4), 430-436.
Fukuoka, Y., Nakanishi, R., Ueoka, H., Kitano, A., Takeshita, K., & Itoh, M. (2006). Effects of wheelchair training on VO2 kinetics in the participants with spinal-cord injury. Disability and rehabilitation. Assistive technology, 1(3), 167-174. https://doi.org/http://dx.doi.org/10.1080/17483100500506033
Gant, K. L., Nagle, K. G., Cowan, R. E., Field-Fote, E. C., Nash, M. S., Kressler, J., Thomas, C. K., Castellanos, M., Widerstrom-Noga, E., & Anderson, K. D. (2018). Body System Effects of a Multi-Modal Training Program Targeting Chronic, Motor Complete Thoracic Spinal Cord Injury. Journal of Neurotrauma, 35(3), 411-423. https://doi.org/http://dx.doi.org/10.1089/neu.2017.5105
Garshick, E., Kelley, A., Cohen, S. A., Garrison, A., Tun, C. G., Gagnon, D., & Brown, R. (2005, Jul). A prospective assessment of mortality in chronic spinal cord injury. Spinal Cord, 43(7), 408-416. https://doi.org/10.1038/sj.sc.3101729
Gater, D. R., Jr., Farkas, G. J., Dolbow, D. R., Berg, A., & Gorgey, A. S. (2021). Body Composition and Metabolic Assessment After Motor Complete Spinal Cord Injury: Development of a Clinically Relevant Equation to Estimate Body Fat. Top Spinal Cord Inj Rehabil, 27(1), 11-22. https://doi.org/10.46292/sci20-00079
Gauthier, C., Brosseau, R., Hicks, A. L., & Gagnon, D. H. (2018). Feasibility, Safety, and Preliminary Effectiveness of a Home-Based Self-Managed High-Intensity Interval Training Program Offered to Long-Term Manual Wheelchair Users. Rehabilitation Research and Practice, 2018((Gauthier, Brosseau, Gagnon) School of Rehabilitation, Universite de Montreal, Montreal, QC, Canada(Gauthier, Gagnon) Pathokinesiology Laboratory, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Centre Integre, Universitaire d), 8209360. https://doi.org/http://dx.doi.org/10.1155/2018/8209360
Gee, C., Eves, N., Sheel, A., & West, C. (2021). How does cervical spinal cord injury impact the cardiopulmonary response to exercise? Respiratory Physiology & Neurobiology, 103714.
Gerrits, H. L., De Haan, A., Sargeant, A. J., Van Langen, H., & Hopman, M. T. (2001). Peripheral vascular changes after electrically stimulated cycle training in people with spinal cord injury. Archives of physical medicine and rehabilitation, 82(6), 832-839. https://doi.org/http://dx.doi.org/10.1053/apmr.2001.23305
Gibbons, R. S., Stock, C. G., Andrews, B. J., Gall, A., & Shave, R. E. (2016). The effect of FES-rowing training on cardiac structure and function: pilot studies in people with spinal cord injury. Spinal Cord, 54(10), 822-829. https://doi.org/https://dx.doi.org/10.1038/sc.2015.228
Gilbert, O., Croffoot, J. R., Taylor, A. J., Nash, M., Schomer, K., & Groah, S. (2014). Serum lipid concentrations among persons with spinal cord injury–A systematic review and meta-analysis of the literature. Atherosclerosis, 232(2), 305-312.
Gorgey, A. S., & Dudley, G. A. (2007, Apr). Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord, 45(4), 304-309. https://doi.org/10.1038/sj.sc.3101968
Gorgey, A. S., Farkas, G. J., Dolbow, D. R., Khalil, R. E., & Gater, D. R. (2018). Gender dimorphism in central adiposity may explain metabolic dysfunction after spinal cord injury. PM&R, 10(4), 338-348.
Gorgey, A. S., & Gater, D. R. (2011a, May). A preliminary report on the effects of the level of spinal cord injury on the association between central adiposity and metabolic profile. Pm & R, 3(5), 440-446.
Gorgey, A. S., & Gater, D. R. (2011b, May). A preliminary report on the effects of the level of spinal cord injury on the association between central adiposity and metabolic profile. PM&R, 3(5), 440-446.
Gorgey, A. S., & Gater, D. R. (2011c, Feb). Regional and relative adiposity patterns in relation to carbohydrate and lipid metabolism in men with spinal cord injury. Appl Physiol Nutr Metab, 36(1), 107-114. https://doi.org/10.1139/H10-091
Gorgey, A. S., Graham, Z. A., Bauman, W. A., Cardozo, C., & Gater, D. R. (2017). Abundance in proteins expressed after functional electrical stimulation cycling or arm cycling ergometry training in persons with chronic spinal cord injury. Journal of Spinal Cord Medicine, 40(4), 439-448. https://doi.org/http://dx.doi.org/10.1080/10790268.2016.1229397
Gorgey, A. S., Graham, Z. A., Chen, Q., Rivers, J., Adler, R. A., Lesnefsky, E. J., & Cardozo, C. P. (2020, Jun). Sixteen weeks of testosterone with or without evoked resistance training on protein expression, fiber hypertrophy and mitochondrial health after spinal cord injury. J Appl Physiol, 128(6), 1487-1496. https://doi.org/10.1152/japplphysiol.00865.2019
Gorgey, A. S., Khalil, R. E., Gill, R., Gater, D. R., Lavis, T. D., Cardozo, C. P., & Adler, R. A. (2019). Low-dose testosterone and evoked resistance exercise after spinal cord injury on cardio-metabolic risk factors: An open-label randomized clinical trial. Journal of neurotrauma, 36(18), 2631-2645. https://doi.org/http://dx.doi.org/10.1089/neu.2018.6136
Gorgey, A. S., & Lawrence, J. (2016). Acute Responses of Functional Electrical Stimulation Cycling on the Ventilation-to-CO2 Production Ratio and Substrate Utilization After Spinal Cord Injury. PM and R, 8(3), 225-234. https://doi.org/http://dx.doi.org/10.1016/j.pmrj.2015.10.006
Gorgey, A. S., Mather, K. J., Poarch, H. J., & Gater, D. R. (2011). Influence of motor complete spinal cord injury on visceral and subcutaneous adipose tissue measured by multi-axial magnetic resonance imaging. J Spinal Cord Med, 34(1), 99-109. https://doi.org/10.1179/107902610X12911165975106
Gorgey, A. S., Poarch, H. J., Adler, R. A., Khalil, R. E., & Gater, D. R. (2013, Nov). Femoral Bone Marrow Adiposity and Cortical Bone Cross-Sectional Areas in Men With Motor Complete Spinal Cord Injury. PM&R, 5(11), 939-948. https://doi.org/10.1016/j.pmrj.2013.05.006
Gorgey, A. S., Wade, R., Sumrell, R., Villadelgado, L., Khalil, R. E., & Lavis, T. (2017). Exoskeleton training may improve level of physical activity after spinal cord injury: A case series. Topics in Spinal Cord Injury Rehabilitation, 23(3), 245-255. https://doi.org/http://dx.doi.org/10.1310/sci16-00025
Gorman, P. H., Scott, W., VanHiel, L., Tansey, K. E., Sweatman, W. M., & Geigle, P. R. (2019). Comparison of peak oxygen consumption response to aquatic and robotic therapy in individuals with chronic motor incomplete spinal cord injury: a randomized controlled trial. Spinal Cord, 57(6), 471-481. https://doi.org/http://dx.doi.org/10.1038/s41393-019-0239-7
Gorman, P. H., Scott, W., York, H., Theyagaraj, M., Price-Miller, N., McQuaid, J., Eyvazzadeh, M., Ivey, F. M., & Macko, R. F. (2016). Robotically assisted treadmill exercise training for improving peak fitness in chronic motor incomplete spinal cord injury: A randomized controlled trial. Journal of Spinal Cord Medicine, 39(1), 32-44. https://doi.org/http://dx.doi.org/10.1179/2045772314Y.0000000281
Graham, K., Yarar-Fisher, C., Li, J., McCully, K. M., Rimmer, J. H., Powell, D., Bickel, C. S., & Fisher, G. (2019). Effects of high-intensity interval training versus moderate-intensity training on cardiometabolic health markers in individuals with spinal cord injury: A pilot study. Topics in Spinal Cord Injury Rehabilitation, 25(3), 248-259. https://doi.org/http://dx.doi.org/10.1310/sci19-00042
Grange, C. C., Bougenot, M. P., Groslambert, A., Tordi, N., & Rouillon, J. D. (2002). Perceived exertion and rehabilitation with wheelchair ergometer: Comparison between patients with spinal cord injury and healthy subjects. Spinal Cord, 40(10), 513-518. https://doi.org/http://dx.doi.org/10.1038/sj.sc.3101353
Grimby, G., Broberg, C., Krotkiewska, I., & Krotkiewski, M. (1976). Muscle fiber composition in patients with traumatic cord lesion. Scand J Rehabil Med, 8(1), 37-42. https://www.ncbi.nlm.nih.gov/pubmed/132700
Groah, S. L., Nash, M. S., Ljungberg, I. H., Libin, A., Hamm, L. F., Ward, E., Burns, P. A., & Enfield, G. (2009). Nutrient intake and body habitus after spinal cord injury: an analysis by sex and level of injury [Clinical Trial Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. J Spinal Cord Med, 32(1), 25-33.
Gurney, A. B., Robergs, R. A., Aisenbrey, J., Cordova, J. C., & McClanahan, L. (1998). Detraining from total body exercise ergometry in individuals with spinal cord injury. Spinal Cord, 36(11), 782-789. https://doi.org/http://dx.doi.org/10.1038/sj.sc.3100698
Hicks, A. L., Martin, K. A., Ditor, D. S., Latimer, A. E., Craven, C., Bugaresti, J., & McCartney, N. (2003). Long-term exercise training in persons with spinal cord injury: Effects on strength, arm ergometry performance and psychological well-being. Spinal Cord, 41(1), 34-43. https://doi.org/http://dx.doi.org/10.1038/sj.sc.3101389
Hjeltnes, N., Aksnes, A. K., Birkeland, K. I., Johansen, J., Lannem, A., & Wallberg-Henriksson, H. (1997). Improved body composition after 8 wk of electrically stimulated leg cycling in tetraplegic patients. American Journal of Physiology – Regulatory Integrative and Comparative Physiology, 273(3 42-3), R1072-R1079. https://doi.org/http://dx.doi.org/10.1152/ajpregu.1997.273.3.r1072
Hjeltnes, N., Galuska, D., Bjornholm, M., Aksnes, A. K., Lannem, A., Zierath, J. R., & Wallberg-Henriksson, H. (1998). Exercise-induced overexpression of key regulatory proteins involved in glucose uptake and metabolism in tetraplegic persons: molecular mechanism for improved glucose homeostasis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 12(15), 1701-1712.
Hoekstra, F., van Nunen, M. P. M., Gerrits, K. H. L., Stolwijk-Swuste, J. M., Crins, M. H. P., & Janssen, T. W. J. (2013). Effect of robotic gait training on cardiorespiratory system in incomplete spinal cord injury. Journal of rehabilitation research and development, 50(10), 1411-1422. https://doi.org/http://dx.doi.org/10.1682/JRRD.2012.10.0186
Hooker, S. P., Figoni, S. F., Rodgers, M. M., Glaser, R. M., Mathews, T., Suryaprasad, A. G., & Gupta, S. C. (1992). Physiologic effects of electrical stimulation leg cycle exercise training in spinal cord injured persons. Archives of physical medicine and rehabilitation, 73(5), 470-476.
Hooker, S. P., Scremin, A. M., Mutton, D. L., Kunkel, C. F., & Cagle, G. (1995). Peak and submaximal physiologic responses following electrical stimulation leg cycle ergometer training. Journal of rehabilitation research and development, 32(4), 361-366.
Hooker, S. P., & Wells, C. L. (1989). Effects of low- and moderate-intensity training in spinal cord-injured persons. Medicine and Science in Sports and Exercise, 21(1), 18-22. https://doi.org/http://dx.doi.org/10.1249/00005768-198902000-00004
Hopman, M. T. E., Groothuis, J. T., Flendrie, M., Gerrits, K. H. L., & Houtman, S. (2002). Increased vascular resistance in paralyzed legs after spinal cord injury is reversible by training. Journal of applied physiology (Bethesda, Md. : 1985), 93(6), 1966-1972.
Horiuchi, M., & Okita, K. (2017). Arm-Cranking Exercise Training Reduces Plasminogen Activator Inhibitor 1 in People With Spinal Cord Injury. Archives of physical medicine and rehabilitation, 98(11), 2174-2180. https://doi.org/http://dx.doi.org/10.1016/j.apmr.2017.02.007
Hubner-Wozniak, E., Morgulec-Adamowicz, N., Malara, M., Lewandowski, P., & Okecka-Szymanska, J. (2012). Effect of rugby training on blood antioxidant defenses in able-bodied and spinal cord injured players. Spinal Cord, 50(3), 253-256. https://doi.org/https://dx.doi.org/10.1038/sc.2011.134
Illman, A., Stiller, K., & Williams, M. (2000, Dec). The prevalence of orthostatic hypotension during physiotherapy treatment in patients with an acute spinal cord injury. Spinal Cord, 38(12), 741-747. https://doi.org/10.1038/sj.sc.3101089
Jack, L. P., Allan, D. B., & Hunt, K. J. (2009). Cardiopulmonary exercise testing during body weight supported treadmill exercise in incomplete spinal cord injury: a feasibility study. Technol Health Care, 17(1), 13-23. https://doi.org/10.3233/THC-2009-0528
Jacobs, P. L. (2009). Effects of resistance and endurance training in persons with paraplegia. Medicine and Science in Sports and Exercise, 41(5), 992-997. https://doi.org/http://dx.doi.org/10.1249/MSS.0b013e318191757f
Jacobs, P. L., Nash, M. S., Klose, K. J., Guest, R. S., Needham-Shropshire, B. M., & Green, B. A. (1997). Evaluation of a training program for persons with SCI paraplegia using the Parastep1 ambulation system: Part 2. Effects on physiological responses to peak arm ergometry. Archives of physical medicine and rehabilitation, 78(8), 794-798. https://doi.org/http://dx.doi.org/10.1016/S0003-9993%2897%2990189-1
Janssen, T. W. J., & Pringle, D. D. (2008). Effects of modified electrical stimulation-induced leg cycle ergometer training for individuals with spinal cord injury. Journal of rehabilitation research and development, 45(6), 819-830. https://doi.org/http://dx.doi.org/10.1682/JRRD.2007.09.0153
Jeon, J. Y., Hettinga, D., Steadward, R. D., Wheeler, G. D., Bell, G., & Harber, V. (2010). Reduced plasma glucose and leptin after 12 weeks of functional electrical stimulationrowing exercise training in spinal cord injury patients. Archives of physical medicine and rehabilitation, 91(12), 1957-1959. https://doi.org/http://dx.doi.org/10.1016/j.apmr.2010.08.024
Jeon, J. Y., Weiss, C. B., Steadward, R. D., Ryan, E., Burnham, R. S., Bell, G., Chilibeck, P., & Wheeler, G. D. (2002, Mar). Improved glucose tolerance and insulin sensitivity after electrical stimulation-assisted cycling in people with spinal cord injury. Spinal Cord, 40(3), 110-117. https://doi.org/10.1038/sj/sc/3101260
Jorgensen, S., Svedevall, S., Magnusson, L., Martin Ginis, K. A., & Lexell, J. (2019). Associations between leisure time physical activity and cardiovascular risk factors among older adults with long-term spinal cord injury. Spinal Cord, 57(5), 427-433. https://doi.org/http://dx.doi.org/10.1038/s41393-018-0233-5
Karlsson, A. K., Attvall, S., Jansson, P. A., Sullivan, L., & Lonnroth, P. (1995a, Jan). Influence of the sympathetic nervous system on insulin sensitivity and adipose tissue metabolism: a study in spinal cord-injured subjects [Research Support, Non-U.S. Gov’t]. Metab Clin Exp, 44(1), 52-58.
Karlsson, A. K., Attvall, S., Jansson, P. A., Sullivan, L., & Lonnroth, P. (1995b, Jan). Influence of the sympathetic nervous system on insulin sensitivity and adipose tissue metabolism: a study in spinal cord-injured subjects [Research Support, Non-U.S. Gov’t]. Metabolism: Clinical & Experimental, 44(1), 52-58.
Keyser, R. E., Rasch, E. K., Finley, M., & Rodgers, M. M. (2003). Improved upper-body endurance following a 12-week home exercise program for manual wheelchair users. Journal of rehabilitation research and development, 40(6), 501-510.
Kim, D. I., Lee, H., Lee, B. S., Kim, J., & Jeon, J. Y. (2015). Effects of a 6-Week Indoor Hand-Bike Exercise Program on Health and Fitness Levels in People With Spinal Cord Injury: A Randomized Controlled Trial Study. Archives of physical medicine and rehabilitation, 96(11), 2033-2040. https://doi.org/http://dx.doi.org/10.1016/j.apmr.2015.07.010
Kim, D. I., Park, D. S., Lee, B. S., & Jeon, J. Y. (2014). A six-week motor-driven functional electronic stimulation rowing program improves muscle strength and body composition in people with spinal cord injury: A pilot study. Spinal Cord, 52(8), 621-624. https://doi.org/http://dx.doi.org/10.1038/sc.2014.76
Kim, D. I., Taylor, J. A., Tan, C. O., Park, H., Kim, J. Y., Park, S. Y., Chung, K. M., Lee, Y. H., Lee, B. S., & Jeon, J. Y. (2019). A pilot randomized controlled trial of 6-week combined exercise program on fasting insulin and fitness levels in individuals with spinal cord injury. European Spine Journal, 28(5), 1082-1091. https://doi.org/http://dx.doi.org/10.1007/s00586-019-05885-7
Krauss, J. C., Robergs, R. A., Depaepe, J. L., Kopriva, L. M., Aisenbury, J. A., Anderson, M. A., & Lange, E. K. (1993). Effects of electrical stimulation and upper body training after spinal cord injury. Medicine and Science in Sports and Exercise, 25(9), 1054-1061.
Kreuger, H. (2011). Spinal cord injury: progress in care and outcomes in the last 25 years. Vancouver: The Rick Hansen Institute.
Krueger, H. (2010). The Economic Burden of Spinal Cord Injury: A Literature Review and Analysis. Delta, British Columbia: Rick Hansen Institute.
Krum, H., Howes, L. G., Brown, D. J., Ungar, G., Moore, P., McNeil, J. J., & Louis, W. J. (1992, Jun). Risk factors for cardiovascular disease in chronic spinal cord injury patients. Paraplegia, 30(6), 381-388. https://doi.org/10.1038/sc.1992.87
La Fountaine, M. F., Cirnigliaro, C. M., Hobson, J. C., Dyson-Hudson, T. A., Mc Kenna, C., Kirshblum, S. C., Spungen, A. M., & Bauman, W. A. (2018). Establishing a threshold to predict risk of cardiovascular disease from the serum triglyceride and high-density lipoprotein concentrations in persons with spinal cord injury. Spinal Cord, 56(11), 1051-1058.
La Fountaine, M. F., Cirnigliaro, C. M., Kirshblum, S. C., McKenna, C., & Bauman, W. A. (2017, Mar 27). Effect of functional sympathetic nervous system impairment of the liver and abdominal visceral adipose tissue on circulating triglyceride-rich lipoproteins. PLoS One, 12(3). https://doi.org/ARTN e0173934 10.1371/journal.pone.0173934
Le Foll-de Moro, D., Tordi, N., Lonsdorfer, E., & Lonsdorfer, J. (2005). Ventilation efficiency and pulmonary function after a wheelchair interval-training program in subjects with recent spinal cord injury. Archives of physical medicine and rehabilitation, 86(8), 1582-1586. https://doi.org/http://dx.doi.org/10.1016/j.apmr.2005.03.018
Lewis, J. G., Jones, L. M., Legge, M., & Elder, P. A. (2010, Nov). Corticosteroid-binding Globulin, Cortisol, Free Cortisol, and Sex Hormone-binding Globulin Responses Following Oral Glucose Challenge in Spinal Cord-injured and Able-bodied Men. Hormone and Metabolic Research, 42(12), 882-886. https://doi.org/10.1055/s-0030-1265128
Liang, H., Chen, D., Wang, Y., Rimmer, J. H., & Braunschweig, C. L. (2007, Sep). Different risk factor patterns for metabolic syndrome in men with spinal cord injury compared with able-bodied men despite similar prevalence rates [Research Support, U.S. Gov’t, P.H.S.]. Arch Phys Med Rehabil, 88(9), 1198-1204.
Libin, A., Tinsley, E. A., Nash, M. S., Mendez, A. J., Burns, P., Elrod, M., Hamm, L. F., & Groah, S. L. (2013, Summer). Cardiometabolic risk clustering in spinal cord injury: results of exploratory factor analysis. Top Spinal Cord Inj Rehabil, 19(3), 183-194. https://doi.org/10.1310/sci1903-183
Lieberman, J., Goff, D., Jr., Hammond, F., Schreiner, P., James Norton, H., Dulin, M., Zhou, X., & Steffen, L. (2014, Spring). Dietary intake relative to cardiovascular disease risk factors in individuals with chronic spinal cord injury: a pilot study. Top Spinal Cord Inj Rehabil, 20(2), 127-136. https://doi.org/10.1310/sci2002-127
Lindberg, T., Arndt, A., Norrbrink, C., Wahman, K., & Bjerkefors, A. (2012). Effects of seated double-poling ergometer training on aerobic and mechanical power in individuals with spinal cord injury. Journal of rehabilitation medicine : official journal of the UEMS European Board of Physical and Rehabilitation Medicine, 44(10), 893-898.
Lotter, J. K., Henderson, C. E., Plawecki, A., Holthus, M. E., Lucas, E. H., Ardestani, M. M., Schmit, B. D., & Hornby, T. G. (2020). Task-Specific Versus Impairment-Based Training on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study. Neurorehabilitation and Neural Repair, 34(7), 627-639. https://doi.org/http://dx.doi.org/10.1177/1545968320927384
Maki, K. C., Briones, E. R., Langbein, W. E., Inman-Felton, A., Nemchausky, B., Welch, M., & Burton, J. (1995, Feb). Associations between serum lipids and indicators of adiposity in men with spinal cord injury [Research Support, Non-U.S. Gov’t
Research Support, U.S. Gov’t, Non-P.H.S.]. Paraplegia, 33(2), 102-109.
Martin Ginis, K., Hicks, A., Latimer, A., Warburton, D., Bourne, C., Ditor, D., Goodwin, D., Hayes, K., McCartney, N., & McIlraith, A. (2011). The development of evidence-informed physical activity guidelines for adults with spinal cord injury. Spinal Cord, 49(11), 1088-1096.
Martin Ginis, K. A., van der Scheer, J. W., Latimer-Cheung, A. E., Barrow, A., Bourne, C., Carruthers, P., Bernardi, M., Ditor, D. S., Gaudet, S., de Groot, S., Hayes, K. C., Hicks, A. L., Leicht, C. A., Lexell, J., Macaluso, S., Manns, P. J., McBride, C. B., Noonan, V. K., Pomerleau, P., Rimmer, J. H., Shaw, R. B., Smith, B., Smith, K. M., Steeves, J. D., Tussler, D., West, C. R., Wolfe, D. L., & Goosey-Tolfrey, V. L. (2018, Apr). Evidence-based scientific exercise guidelines for adults with spinal cord injury: an update and a new guideline. Spinal Cord, 56(4), 308-321. https://doi.org/10.1038/s41393-017-0017-3
Matos-Souza, J. R., de Rossi, G., Costa e Silva, A. A., Azevedo, E. R., Pithon, K. R., Schreiber, R., Sposito, A. C., Gorla, J. I., Cliquet, A., & Nadruz, W. (2016). Impact of Adapted Sports Activities on the Progression of Carotid Atherosclerosis in Subjects With Spinal Cord Injury. Archives of physical medicine and rehabilitation, 97(6), 1034-1037. https://doi.org/http://dx.doi.org/10.1016/j.apmr.2015.11.002
McGlinchey-Berroth, R., Morrow, L., Ahlquist, M., Sarkarati, M., & Minaker, K. L. (1995, Jul). Late-life spinal cord injury and aging with a long term injury: characteristics of two emerging populations. J Spinal Cord Med, 18(3), 183-193.
McLeod, J. C., Diana, H., & Hicks, A. L. (2020). Sprint interval training versus moderate-intensity continuous training during inpatient rehabilitation after spinal cord injury: a randomized trial. Spinal Cord, 58(1), 106-115. https://doi.org/http://dx.doi.org/10.1038/s41393-019-0345-6
Michael, J., Krause, J. S., & Lammertse, D. P. (1999). Recent trends in mortality and causes of death among persons with spinal cord injury. Archives of physical medicine and rehabilitation, 80(11), 1411-1419.
Millar, P. J., Rakobowchuk, M., Adams, M. M., Hicks, A. L., McCartney, N., & MacDonald, M. J. (2009). Effects of short-term training on heart rate dynamics in individuals with spinal cord injury. Autonomic neuroscience : basic & clinical, 150(1-2), 116-121. https://doi.org/https://dx.doi.org/10.1016/j.autneu.2009.03.012
Minaire, P., Edouard, C., Arlot, M., & Meunier, P. J. (1984, May). Marrow changes in paraplegic patients. Calcif Tissue Int, 36(3), 338-340. https://doi.org/10.1007/bf02405340
Mohr, T., Dela, F., Handberg, A., Biering-Sorensen, F., Galbo, H., & Kjaer, M. (2001). Insulin action and long-term electrically induced training in individuals with spinal cord injuries. Medicine and Science in Sports and Exercise, 33(8), 1247-1252. https://doi.org/http://dx.doi.org/10.1097/00005768-200108000-00001
Montesinos-Magraner, L., Serra-Ano, P., Garcia-Masso, X., Ramirez-Garceran, L., Gonzalez, L., & Gonzalez-Viejo, M. (2018). Comorbidity and physical activity in people with paraplegia: a descriptive cross-sectional study. Spinal Cord, 56(1), 52-56.
Moreno, M. A., Paris, J. V., Sarro, K. J., Lodovico, A., Silvatti, A. P., & Barros, R. M. L. (2013). Wheelchair rugby improves pulmonary function in people with tetraplegia after 1 year of training. Journal of strength and conditioning research, 27(1), 50-56. https://doi.org/https://dx.doi.org/10.1519/JSC.0b013e318252f5fe
Mutton, D. L., Scremin, A. M. E., Barstow, T. J., Scott, M. D., Kunkel, C. F., & Cagle, T. G. (1997). Physiologic responses during functional electrical stimulation leg cycling and hybrid exercise in spinal cord injured subjects. Archives of physical medicine and rehabilitation, 78(7), 712-718. https://doi.org/http://dx.doi.org/10.1016/S0003-9993%2897%2990078-2
Myers, J., Gopalan, R., Shahoumian, T., & Kiratli, J. (2012). Effects of customized risk reduction program on cardiovascular risk in males with spinal cord injury. Journal of rehabilitation research and development, 49(9), 1355-1364. https://doi.org/http://dx.doi.org/10.1682/JRRD.2011.11.0215
Nash, M. S., DeGroot, J., Martinez-Arizala, A., & Mendez, A. J. (2005). Evidence for an exaggerated postprandial lipemia in chronic paraplegia. J Spinal Cord Med, 28(4), 320-325. https://www.ncbi.nlm.nih.gov/pubmed/16396382
Nash, M. S., Groah, S. L., Gater, D. R., Dyson-Hudson, T. A., Lieberman, J. A., Myers, J., Sabharwal, S., & Taylor, A. J. (2019a, Jun 10). Identification and Management of Cardiometabolic Risk after Spinal Cord Injury: Clinical Practice Guideline for Health Care Providers. J Spinal Cord Med, 42(5), 643-677. https://doi.org/10.1080/10790268.2018.1511401
Nash, M. S., Groah, S. L., Gater, D. R., Dyson-Hudson, T. A., Lieberman, J. A., Myers, J., Sabharwal, S., & Taylor, A. J. (2019b, Jun 10). Identification and Management of Cardiometabolic Risk after Spinal Cord Injury: Clinical Practice Guideline for Health Care Providers. J Spinal Cord Med, 1-35. https://doi.org/10.1080/10790268.2018.1511401
Nash, M. S., Jacobs, P. L., Montalvo, B. M., Klose, K. J., Guest, R. S., & Needham-Shropshire, B. M. (1997). Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 5. Lower extremity blood flow and hyperemic responses to occlusion are augmented by ambulation training. Archives of physical medicine and rehabilitation, 78(8), 808-814.
Nightingale, T. E., Walhin, J. P., Thompson, D., & Bilzon, J. L. J. (2017). Impact of Exercise on Cardiometabolic Component Risks in Spinal Cord-injured Humans. Medicine and Science in Sports and Exercise, 49(12), 2469-2477. https://doi.org/http://dx.doi.org/10.1249/MSS.0000000000001390
Nightingale, T. E., Walhin, J. P., Thompson, D., & Bilzon, J. L. J. (2019). Biomarkers of cardiometabolic health are associated with body composition characteristics but not physical activity in persons with spinal cord injury. Journal of Spinal Cord Medicine, 42(3), 328-337. https://doi.org/http://dx.doi.org/10.1080/10790268.2017.1368203
Nooijen, C. F., Stam, H. J., Sluis, T., Valent, L., Twisk, J., & van den Berg-Emons, R. J. (2017). A behavioral intervention promoting physical activity in people with subacute spinal cord injury: secondary effects on health, social participation and quality of life. Clinical rehabilitation, 31(6), 772-780. https://doi.org/http://dx.doi.org/10.1177/0269215516657581
Nooijen, C. F. J., De Groot, S., Postma, K., Bergen, M. P., Stam, H. J., Bussmann, J. B. J., & Van Den Berg-Emons, R. J. (2012). A more active lifestyle in persons with a recent spinal cord injury benefits physical fitness and health. Spinal Cord, 50(4), 320-323. https://doi.org/http://dx.doi.org/10.1038/sc.2011.152
Ordonez, F. J., Rosety, M. A., Camacho, A., Rosety, I., Diaz, A. J., Fornieles, G., Bernardi, M., & Rosety-Rodriguez, M. (2013). Arm-cranking exercise reduced oxidative damage in adults with chronic spinal cord injury. Archives of physical medicine and rehabilitation, 94(12), 2336-2341. https://doi.org/http://dx.doi.org/10.1016/j.apmr.2013.05.029
Otsuka, Y., Shima, N., Moritani, T., Okuda, K., & Yabe, K. (2008, 2008/06/10). Orthostatic influence on heart rate and blood pressure variability in trained persons with tetraplegia. European Journal of Applied Physiology, 104(1), 75. https://doi.org/10.1007/s00421-008-0783-x
Palmer, J. P., Henry, D. P., Benson, J. W., Johnson, D. G., & Ensinck, J. W. (1976, Feb). Glucagon response to hypoglycemia in sympathectomized man. J Clin Invest, 57(2), 522-525. https://doi.org/10.1172/JCI108305
Pelletier, C. A., Totosy De Zepetnek, J. O., Macdonald, M. J., & Hicks, A. L. (2015). A 16-week randomized controlled trial evaluating the physical activity guidelines for adults with spinal cord injury. Spinal Cord, 53(5), 363-367. https://doi.org/http://dx.doi.org/10.1038/sc.2014.167
Phillips, S. M., Stewart, B. G., Mahoney, D. J., Hicks, A. L., McCartney, N., Tang, J. E., Wilkinson, S. B., Armstrong, D., & Tarnopolsky, M. A. (2004). Body-weight-support treadmill training improves blood glucose regulation in persons with incomplete spinal cord injury. J Appl Physiol, 97(2), 716-724. https://doi.org/http://dx.doi.org/10.1152/japplphysiol.00167.2004
Pollack, S. F., Axen, K., Spielholz, N., Levin, N., Haas, F., & Ragnarsson, K. T. (1989). Aerobic training effects of electrically induced lower extremity exercises in spinal cord injured people. Archives of physical medicine and rehabilitation, 70(3), 214-219.
Qiu, S., Alzhab, S., Picard, G., & Taylor, J. A. (2016). Ventilation Limits Aerobic Capacity after Functional Electrical Stimulation Row Training in High Spinal Cord Injury. Medicine and Science in Sports and Exercise, 48(6), 1111-1118. https://doi.org/http://dx.doi.org/10.1249/MSS.0000000000000880
Ragnarsson, K. T. (1988). Physiologic effects of functional electrical stimulation-induced exercises in spinal cord-injured individuals. Clinical orthopaedics and related research(233), 53-63.
Rosety-Rodriguez, M., Camacho, A., Rosety, I., Fornieles, G., Rosety, M. A., Diaz, A. J., Bernardi, M., Rosety, M., & Ordonez, F. J. (2014). Low-grade systemic inflammation and leptin levels were improved by arm cranking exercise in adults with chronic spinal cord injury. Archives of physical medicine and rehabilitation, 95(2), 297-302. https://doi.org/http://dx.doi.org/10.1016/j.apmr.2013.08.246
Ryan, T. E., Brizendine, J. T., Backus, D., & McCully, K. K. (2013). Electrically induced resistance training in individuals with motor complete spinal cord injury. Archives of physical medicine and rehabilitation, 94(11), 2166-2173. https://doi.org/http://dx.doi.org/10.1016/j.apmr.2013.06.016
Sabatier, M. J., Stoner, L., Mahoney, E. T., Black, C., Elder, C., Dudley, G. A., & McCully, K. (2006). Electrically stimulated resistance training in SCI individuals increases muscle fatigue resistance but not femoral artery size or blood flow. Spinal Cord, 44(4), 227-233. https://doi.org/http://dx.doi.org/10.1038/sj.sc.3101834
Sahota, I. S., Ravensbergen, H. R., McGrath, M. S., & Claydon, V. E. (2012, Oct 10). Cerebrovascular responses to orthostatic stress after spinal cord injury. J Neurotrauma, 29(15), 2446-2456. https://doi.org/10.1089/neu.2012.2379
Sarro, K. J., Paris, J. V., Moreno, M. A., & Barros, R. M. L. (2016). Thoracoabdominal mobility is improved in subjects with tetraplegia after one year of wheelchair rugby training. Science and Sports, 31(5), 261-269. https://doi.org/http://dx.doi.org/10.1016/j.scispo.2016.04.006
Schreiber, R., Souza, C. M., Paim, L. R., de Rossi, G., Matos-Souza, J. R., Costa e Silva, A. D. A., Faria, F. R., Azevedo, E. R., Alonso, K. C., Sposito, A. C., Cliquet, A., Gorla, J. I., & Nadruz, W. (2018). Impact of Regular Physical Activity on Adipocytokines and Cardiovascular Characteristics in Spinal Cord-Injured Subjects. Archives of physical medicine and rehabilitation, 99(8), 1561. https://doi.org/http://dx.doi.org/10.1016/j.apmr.2018.02.010
Segal, J. L., Thompson, J. F., & Tayek, J. A. (2007, Jun). Effects of long-term 4-aminopyridine therapy on glucose tolerance and glucokinetics in patients with spinal cord injury. Pharmacotherapy, 27(6), 789-792. https://doi.org/DOI 10.1592/phco.27.6.789
Shields, R. K. (1995, Jun). Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle. J Neurophysiol, 73(6), 2195-2206. https://doi.org/10.1152/jn.1995.73.6.2195
Solinsky, R., Mercier, H., Picard, G., & Taylor, J. A. (2020). Cardiometabolic Effects of High-Intensity Hybrid Functional Electrical Stimulation Exercise after Spinal Cord Injury. PM and R((Solinsky, Mercier, Picard, Taylor) Spaulding Rehabilitation Hospital, Boston, MA, United States(Solinsky, Mercier, Taylor) Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States(Solinsky, Taylor) Spaulding R). https://doi.org/http://dx.doi.org/10.1002/pmrj.12507
Soyupek, F., Savas, S., Ozturk, O., Ilgun, E., Bircan, A., & Akkaya, A. (2009). Effects of body weight supported treadmill training on cardiac and pulmonary functions in the patients with incomplete spinal cord injury. Journal of Back and Musculoskeletal Rehabilitation, 22(4), 213-218. https://doi.org/http://dx.doi.org/10.3233/BMR-2009-0237
Spungen, A. M., Adkins, R. H., Stewart, C. A., Wang, J., Pierson, R. N., Jr., Waters, R. L., & Bauman, W. A. (2003, Dec). Factors influencing body composition in persons with spinal cord injury: a cross-sectional study [Clinical Trial Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. J Apply Physiol, 95(6), 2398-2407.
Spungen, A. M., Wang, J., Pierson, R. N., Jr., & Bauman, W. A. (2000, Apr). Soft tissue body composition differences in monozygotic twins discordant for spinal cord injury. J Appl Physiol, 88(4), 1310-1315. https://doi.org/10.1152/jappl.2000.88.4.1310
Squair, J. W., West, C. R., & Krassioukov, A. V. (2015). Neuroprotection, plasticity manipulation, and regenerative strategies to improve cardiovascular function following spinal cord injury. Journal of neurotrauma, 32(9), 609-621.
Stevens, S. L., Caputo, J. L., Fuller, D. K., & Morgan, D. W. (2015). Effects of underwater treadmill training on leg strength, balance, and walking performance in adults with incomplete spinal cord injury. Journal of Spinal Cord Medicine, 38(1), 91-101. https://doi.org/http://dx.doi.org/10.1179/2045772314Y.0000000217
Stewart, B. G., Tarnopolsky, M. A., Hicks, A. L., McCartney, N., Mahoney, D. J., Staron, R., & Phillips, S. M. (2004a, Jul). Treadmill training-induced adaptations in muscle phenotype in persons with incomplete spinal cord injury. Muscle & Nerve, 30(1), 61-68. https://doi.org/10.1002/mus.20048
Stewart, B. G., Tarnopolsky, M. A., Hicks, A. L., McCartney, N., Mahoney, D. J., Staron, R., & Phillips, S. M. (2004b). Treadmill training-induced adaptations in muscle phenotype in persons with incomplete spinal cord injury. Muscle and Nerve, 30(1), 61-68. https://doi.org/http://dx.doi.org/10.1002/mus.20048
Stoner, L., Sabatier, M. J., Mahoney, E. T., Dudley, G. A., & McCully, K. K. (2007). Electrical stimulation-evoked resistance exercise therapy improves arterial health after chronic spinal cord injury. Spinal Cord, 45(1), 49-56. https://doi.org/http://dx.doi.org/10.1038/sj.sc.3101940
Sutbeyaz, S. T., Koseoglu, B. F., & Gokkaya, N. K. (2005). The combined effects of controlled breathing techniques and ventilatory and upper extremity muscle exercise on cardiopulmonary responses in patients with spinal cord injury. International journal of rehabilitation research. Internationale Zeitschrift fur Rehabilitationsforschung. Revue internationale de recherches de readaptation, 28(3), 273-276.
Talmadge, R. J., Castro, M. J., Apple, D. F., Jr., & Dudley, G. A. (2002, Jan). Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. J Appl Physiol, 92(1), 147-154. https://doi.org/10.1152/japplphysiol.000247.2001
Talmadge, R. J., Roy, R. R., Caiozzo, V. J., & Edgerton, V. R. (2002, Oct). Mechanical properties of rat soleus after long-term spinal cord transection. J Appl Physiol, 93(4), 1487-1497. https://doi.org/10.1152/japplphysiol.00053.2002
Taylor, J. A., Picard, G., Porter, A., Morse, L. R., Pronovost, M. F., & Deley, G. (2014). Hybrid functional electrical stimulation exercise training alters the relationship between spinal cord injury level and aerobic capacity. Archives of physical medicine and rehabilitation, 95(11), 2172-2179. https://doi.org/http://dx.doi.org/10.1016/j.apmr.2014.07.412
Teasell, R. W., Arnold, J. M., Krassioukov, A., & Delaney, G. A. (2000, Apr). Cardiovascular consequences of loss of supraspinal control of the sympathetic nervous system after spinal cord injury. Arch Phys Med Rehabil, 81(4), 506-516. https://doi.org/10.1053/mr.2000.3848
Terson de Paleville, D., McKay, W., Aslan, S., Folz, R., Sayenko, D., & Ovechkin, A. (2013). Locomotor step training with body weight support improves respiratory motor function in individuals with chronic spinal cord injury. Respiratory Physiology & Neurobiology, 189(3), 491-497. https://doi.org/https://dx.doi.org/10.1016/j.resp.2013.08.018
Tordi, N., Dugue, B., Klupzinski, D., Rasseneur, L., Rouillon, J. D., & Lonsdorfer, J. (2001). Interval training program on a wheelchair ergometer for paraplegic subjects. Spinal Cord, 39(10), 532-537. https://doi.org/http://dx.doi.org/10.1038/sj.sc.3101206
Torhaug, T., Brurok, B., Hoff, J., Helgerud, J., & Leivseth, G. (2016). The effect from maximal bench press strength training on work economy during wheelchair propulsion in men with spinal cord injury. Spinal Cord, 54(10), 838-842. https://doi.org/http://dx.doi.org/10.1038/sc.2016.27
Totosy de Zepetnek, J. O., Pelletier, C. A., Hicks, A. L., & MacDonald, M. J. (2015, 2015/09/01/). Following the Physical Activity Guidelines for Adults With Spinal Cord Injury for 16 Weeks Does Not Improve Vascular Health: A Randomized Controlled Trial. Archives of physical medicine and rehabilitation, 96(9), 1566-1575. https://doi.org/https://doi.org/10.1016/j.apmr.2015.05.019
Turiel, M., Sitia, S., Cicala, S., Magagnin, V., Bo, I., Porta, A., Caiani, E., Ricci, C., Licari, V., De Gennaro Colonna, V., & Tomasoni, L. (2011). Robotic treadmill training improves cardiovascular function in spinal cord injury patients. International journal of cardiology, 149(3), 323-329. https://doi.org/https://dx.doi.org/10.1016/j.ijcard.2010.02.010
Valent, L., Dallmeijer, A., Houdijk, H., Slootman, H. J., Janssen, T. W., & Van Der Woude, L. H. (2010). Effects of hand cycle training on wheelchair capacity during clinical rehabilitation in persons with a spinal cord injury. Disability and rehabilitation, 32(26), 2191-2200. https://www.tandfonline.com/doi/abs/10.3109/09638288.2010.509461
Valent, L. J., Dallmeijer, A. J., Houdijk, H., Slootman, H. J., Post, M. W., & van der Woude, L. H. (2008). Influence of Hand Cycling on Physical Capacity in the Rehabilitation of Persons With a Spinal Cord Injury: A Longitudinal Cohort Study. Archives of physical medicine and rehabilitation, 89(6), 1016-1022. https://doi.org/http://dx.doi.org/10.1016/j.apmr.2007.10.034
Valent, L. J. M., Dallmeijer, A. J., Houdijk, H., Slootman, H. J., Janssen, T. W., Post, M. W. M., & van der Woude, L. H. (2009). Effects of hand cycle training on physical capacity in individuals with tetraplegia: a clinical trial. Physical therapy, 89(10), 1051-1060. https://doi.org/https://dx.doi.org/10.2522/ptj.20080340
van der Scheer, J. W., de Groot, S., Tepper, M., Faber, W., group, A., Veeger, D. H., & van der Woude, L. H. V. (2016). Low-intensity wheelchair training in inactive people with long-term spinal cord injury: A randomized controlled trial on fitness, wheelchair skill performance and physical activity levels. Journal of rehabilitation medicine, 48(1), 33-42. https://doi.org/https://dx.doi.org/10.2340/16501977-2037
Van Duijnhoven, N., Hesse, E., Janssen, T., Wodzig, W., Scheffer, P., & Hopman, M. (2010). Impact of exercise training on oxidative stress in individuals with a spinal cord injury. European Journal of Applied Physiology, 109(6), 1059-1066. https://doi.org/http://dx.doi.org/10.1007/s00421-010-1398-6
Vivodtzev, I., Napolitano, A., Picard, G., & Taylor, J. A. (2020). Ventilatory support during whole-body row training improves oxygen uptake efficiency in patients with high-level spinal cord injury: A pilot study. Respiratory Medicine, 171((Vivodtzev, Napolitano, Taylor) Harvard Medical School, Department of Physical Medicine and Rehabilitation, Boston, MA, United States(Vivodtzev, Napolitano, Picard, Taylor) Spaulding Rehabilitation Hospital, Cardiovascular Research Laboratory, Cambridge), 106104. https://doi.org/http://dx.doi.org/10.1016/j.rmed.2020.106104
Vivodtzev, I., Picard, G., Cepeda, F. X., & Taylor, J. A. (2020). Acute Ventilatory Support During Whole-Body Hybrid Rowing in Patients With High-Level Spinal Cord Injury: A Randomized Controlled Crossover Trial. Chest, 157(5), 1230-1240. https://doi.org/http://dx.doi.org/10.1016/j.chest.2019.10.044
Wan, D., & Krassioukov, A. V. (2014). Life-threatening outcomes associated with autonomic dysreflexia: a clinical review. The journal of spinal cord medicine, 37(1), 2-10.
Wang, Y. H., Chen, S. Y., Wang, T. D., Hwang, B. S., Huang, T. S., & Su, T. C. (2009, Oct). The relationships among serum glucose, albumin concentrations and carotid atherosclerosis in men with spinal cord injury. Atherosclerosis, 206(2), 528-534. https://doi.org/10.1016/j.atherosclerosis.2009.02.035
Washburn, R. A., & Figoni, S. F. (1999, Oct). High density lipoprotein cholesterol in individuals with spinal cord injury: the potential role of physical activity. Spinal Cord, 37(10), 685-695. https://doi.org/10.1038/sj.sc.3100917
Wen, H., Botticello, A. L., Bae, S., Heinemann, A. W., Boninger, M., Houlihan, B. V., & Chen, Y. (2019, Sep). Racial and Ethnic Differences in Obesity in People With Spinal Cord Injury: The Effects of Disadvantaged Neighborhood. Arch Phys Med Rehabil, 100(9), 1599-1606. https://doi.org/10.1016/j.apmr.2019.02.008
Wheeler, G. D., Andrews, B., Lederer, R., Davoodi, R., Natho, K., Weiss, C., Jeon, J., Bhambhani, Y., & Steadward, R. D. (2002). Functional electric stimulation-assisted rowing: Increasing cardiovascular fitness through functional electric stimulation rowing training in persons with spinal cord injury. Archives of physical medicine and rehabilitation, 83(8), 1093-1099. https://doi.org/http://dx.doi.org/10.1053/apmr.2002.33656
Williams, A. M., Ma, J. K., Martin Ginis, K. A., & West, C. R. (2021). Effects of a Tailored Physical Activity Intervention on Cardiovascular Structure and Function in Individuals With Spinal Cord Injury. Neurorehabilitation and Neural Repair, 35(8), 692-703. https://doi.org/10.1177/15459683211017504
Williams, A. M. M., Chisholm, A. E., Lynn, A., Malik, R. N., Eginyan, G., & Lam, T. (2020). Arm crank ergometer “spin” training improves seated balance and aerobic capacity in people with spinal cord injury. Scandinavian journal of medicine & science in sports, 30(2), 361-369. https://doi.org/http://dx.doi.org/10.1111/sms.13580
Wouda, M. F., Lundgaard, E., Becker, F., & Strom, V. (2018). Effects of moderate- and high-intensity aerobic training program in ambulatory subjects with incomplete spinal cord injury-a randomized controlled trial. Spinal Cord, 56(10), 955-963. https://doi.org/http://dx.doi.org/10.1038/s41393-018-0140-9
Yarar-Fisher, C., Bickel, C. S., Windham, S. T., McLain, A. B., & Bamman, M. M. (2013a, Sep). Skeletal muscle signaling associated with impaired glucose tolerance in spinal cord-injured men and the effects of contractile activity. Journal of Applied Physiology, 115(5), 756-764. https://doi.org/10.1152/japplphysiol.00122.2013
Yarar-Fisher, C., Bickel, C. S., Windham, S. T., McLain, A. B., & Bamman, M. M. (2013b, Sep). Skeletal muscle signaling associated with impaired glucose tolerance in spinal cord-injured men and the effects of contractile activity. J Appl Physiol, 115(5), 756-764. https://doi.org/10.1152/japplphysiol.00122.2013
Yarar-Fisher, C., Polston, K. F. L., Eraslan, M., Henley, K. Y., Kinikli, G. I., Bickel, C. S., Windham, S. T., McLain, A. B., Oster, R. A., & Bamman, M. M. (2018). Paralytic and nonparalytic muscle adaptations to exercise training versus high-protein diet in individuals with long-standing spinal cord injury. Journal of applied physiology (Bethesda, Md. : 1985), 125(1), 64-72. https://doi.org/http://dx.doi.org/10.1152/japplphysiol.01029.2017
Yim, S. Y., Cho, K. J., Park, C. I., Yoon, T. S., Han, D. Y., Kim, S. K., & Lee, H. L. (1993). Effect of wheelchair ergometer training on spinal cord-injured paraplegics. Yonsei medical journal, 34(3), 278-286. https://doi.org/http://dx.doi.org/10.3349/ymj.1993.34.3.278
Zbogar, D., Eng, J. J., Krassioukov, A. V., Scott, J. M., Esch, B. T. A., & Warburton, D. E. R. (2008). The effects of functional electrical stimulation leg cycle ergometry training on arterial compliance in individuals with spinal cord injury. Spinal Cord, 46(11), 722-726. https://doi.org/http://dx.doi.org/10.1038/sc.2008.34
Zleik, N., Weaver, F., Harmon, R. L., Le, B., Radhakrishnan, R., Jirau-Rosaly, W. D., Craven, B. C., Raiford, M., Hill, J. N., Etingen, B., Guihan, M., Heggeness, M. H., Ray, C., & Carbone, L. (2019, Nov). Prevention and management of osteoporosis and osteoporotic fractures in persons with a spinal cord injury or disorder: A systematic scoping review. J Spinal Cord Med, 42(6), 735-759. https://doi.org/10.1080/10790268.2018.1469808
Zlotolow, S. P., Levy, E., & Bauman, W. A. (1992, Jul). The serum lipoprotein profile in veterans with paraplegia: the relationship to nutritional factors and body mass index [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. J Am Paraplegia Soc, 15(3), 158-162.