References
Aach M, Cruciger O, Sczesny-Kaiser M, Höffken O, Meindl RCh, Tegenthoff M, Schwenkreis P, Sankai Y, Schildhauer TA. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J. 2014; 14:2847-53. doi: 10.1016/j.spinee.2014.03.042.
Abou L, Malala VD, Yarnot R, Alluri A, Rice LA. Effects of Virtual Reality Therapy on Gait and Balance Among Individuals With Spinal Cord Injury: A Systematic Review and Meta-analysis. Neurorehabil Neural Repair. 2020; 34: 375-388. doi: 10.1177/1545968320913515.
Afshari K, Ozturk ED, Yates B, Picard G, Taylor JA. Effect of hybrid FES exercise on body composition during the sub-acute phase of spinal cord injury. PLoS One. 2022: 17: e0262864
Agarwal S, Kobetic R, Nandurkar S, Marsolais EB. Functional electrical stimulation for walking in paraplegia: 17-year follow-up of 2 cases. J Spinal Cord Med. 2003; 26: 86-91. doi: 10.1080/10790268.2003.11753666.
Aguirre-Güemez AV, Pérez-Sanpablo AI, Quinzaños-Fresnedo J, Pérez-Zavala R, Barrera-Ortiz A. Walking speed is not the best outcome to evaluate the effect of robotic assisted gait training in people with motor incomplete Spinal Cord Injury: A Systematic Review with meta-analysis. J Spinal Cord Med. 2019. 42: 142-154
Al’joboori Y, Massey SJ, Knight SL, Donaldson NdN, Duffell LD. The Effects of Adding Transcutaneous Spinal Cord Stimulation (tSCS) to Sit-To-Stand Training in People with Spinal Cord Injury: A Pilot Study. J Clin Med. 2020; 9: 2765 doi: 10.3390/jcm9092765.
Alashram AR, Padua E, Annino G. Effects of Whole-Body Vibration on Motor Impairments in Patients With Neurological Disorders: A Systematic Review. Am J Phys Med Rehabil. 2019; 98: 1084-1098. doi: 10.1097/PHM.0000000000001252.
Alashram AR, Annino G, Padua E. Robot-assisted gait training in individuals with spinal cord injury: A systematic review for the clinical effectiveness of Lokomat. J Clin Neurosci. 2021; 91: 260-269. doi: 10.1016/j.jocn.2021.07.019.
Alashram AR. Letter to the Editor on “Effects of Electrical Stimulation Training on Body Composition Parameters After Spinal Cord Injury: A Systematic Review”. Arch Phys Med Rehabil. 2023; 104: 514. doi: 10.1016/j.apmr.2022.11.013.
Alcobendas-Maestro M, Esclarín-Ruz A, Casado-López RM, Muñoz-González A, Pérez-Mateos G, González-Valdizán E, Martín JLR. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial. Neurorehabil Neural Repair. 2012; 26: 1058-63. doi: 10.1177/1545968312448232.
Alexeeva N, Sames C, Jacobs PL, Hobday L, Distasio MM, Mitchell SA, Calancie B. Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial. J Spinal Cord Med. 2011; 34: 362-79. doi: 10.1179/2045772311Y.0000000018.
Alharbi A, Li J, Womack E, Farrow M, Yarar-Fisher C. The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Cross-Sectional Area and Inflammatory Signaling. Int J Mol Sci. 2024; 25: 11095. doi: 10.3390/ijms252011095.
Amatachaya S, Promkeaw D, Arayawichanon P, Thaweewannakij T, Amatachaya P. Various Surfaces Benefited Functional Outcomes and Fall Incidence in Individuals With Spinal Cord Injury: A Randomized Controlled Trial With Prospective Data Follow-up. Arch Phys Med Rehabil. 2021; 102: 19-26. doi: 10.1016/j.apmr.2020.08.009.
Amatachaya S, Nithiatthawanon T, Amatachaya P, Thaweewannakij T. Effects of four-week lower limb loading training with and without augmented feedback on mobility, walking device use, and falls among ambulatory individuals with spinal cord injury: a randomized controlled trial. Disabil Rehabil. 2023; 45: 4431-4439. doi: 10.1080/09638288.2022.2152502.
An C-M, Park Y-H. The effects of semi-immersive virtual reality therapy on standing balance and upright mobility function in individuals with chronic incomplete spinal cord injury: A preliminary study. J Spinal Cord Med. 2018; 41: 223-229. doi: 10.1080/10790268.2017.1369217.
An Y, Park C. The effects of virtual soccer game on balance, gait function, and kick speed in chronic incomplete spinal cord injury: a randomized controlled trial. Spinal Cord. 2022; 60: 504-509. doi: 10.1038/s41393-021-00745-y.
Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014; 137:1394-409.
Angeli CA, Boakye M, Morton RA, Vogt J, Benton K, Chen Y, et al. Recovery of Over-Ground Walking after Chronic Motor Complete Spinal Cord Injury. N Engl J Med. 2018; 379: 1244-1250. DOI: 10.1056/NEJMoa1803588
Aravind N, Harvey LA, Glinsky KV. Physiotherapy interventions for increasing muscle strength in people with spinal cord injuries: a systematic review. Spinal Cord. 2019; 57: 449-460. doi: 10.1038/s41393-019-0242-z.
Arazpour M, Bani MA, Hutchins SW, Jones RK. The physiological cost index of walking with mechanical and powered gait orthosis in patients with spinal cord injury. Spinal Cord. 2012; 51: 356-359.
Arazpour M, Tajik HR, Aminian G, Bani MA, Ghomshe FT, Hutchins SW. Comparison of the effects of solid versus hinged ankle foot orthoses on select temporal gait parameters in patients with incomplete spinal cord injury during treadmill walking. Prosthet Orthot Int. 2013; 37: 70-5. doi: 10.1177/0309364612448511.
Arazpour M, Samadian M, Ebrahimzadeh K, Ahmadi Bani M, Hutchins SW. The influence of orthosis options on walking parameters in spinal cord-injured patients: a literature review. Spinal Cord. 2016 Jun;54(6):412-22. doi: 10.1038/sc.2015.238.
Arienti C, Patrini M, Negrini S, Kiekens C. Overview of Cochrane Systematic Reviews for Rehabilitation Interventions in Persons With Spinal Cord Injury: A Mapping Synthesis. Arch Phys Med Rehabil. 2023; 104: 143-150. doi: 10.1016/j.apmr.2022.07.003.
Arija-Blázquez A, Ceruelo-Abajo S, Díaz-Merino MS, Godino-Durán JA, Martínez-Dhier L, Martin JLR, Florensa-Vila J. Effects of electromyostimulation on muscle and bone in men with acute traumatic spinal cord injury: A randomized clinical trial. J Spinal Cord Medi. 2014; 37: 299-309. doi: 10.1179/2045772313Y.0000000142.
Arnold D, Gillespie J, Bennett M, Callender L, Sikka S, Hamilton R, Driver S, Swank C. Clinical Delivery of Overground Exoskeleton Gait Training in Persons With Spinal Cord Injury Across the Continuum of Care: A Retrospective Analysis. Top Spinal Cord Inj Rehabil. 2024; 30: 74-86. doi: 10.46292/sci23-00001.
Arroyo-Fernández R, Menchero-Sánchez R, Pozuelo-Carrascosa DP, Romay-Barrero H, Fernández-Maestra A, Martínez-Galán I. Effectiveness of Body Weight-Supported Gait Training on Gait and Balance for Motor-Incomplete Spinal Cord Injuries: A Systematic Review with Meta-Analysis. J Clin Med. 2024; 13: 1105. doi: 10.3390/jcm13041105.
Bach Baunsgaard C, Vig Nissen U, Katrin Brust A, Frotzler A, Ribeill C, Kalke YB, León N, Gómez B, Samuelsson K, Antepohl W, Holmström U, Marklund N, Glott T, Opheim A, Benito J, Murillo N, Nachtegaal J, Faber W, Biering-Sørensen F. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics. Spinal Cord. 2018a; 56: 106-116. doi: 10.1038/s41393-017-0013-7.
Bajd T, Kralj A, Stefancic M, Lavrac N. Use of functional electrical stimulation in the lower extremities of incomplete spinal cord injured patients. Artif Organs. 1999; 23: 403-9. doi: 10.1046/j.1525-1594.1999.06360.x.
Baldi JC, Jackson RD, Moraille R, Mysiw WJ. Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation. Spinal Cord. 1998; 36: 463-469.
Bani MA, Arazpour M, Farahmand F, Mousavi ME, Hutchins SW. Comparison of new medial linkage reciprocating gait orthosis and isocentric reciprocating gait orthosis on energy consumption in paraplegic patients: a case series. Spinal Cord Ser Cases. 2015; 1: 15012. doi: 10.1038/scsandc.2015.12.
Baniasad M, Farahmand F, Arazpour M, Zohoor H. Role and Significance of Trunk and Upper Extremity Muscles in Walker-Assisted Paraplegic Gait: A Case Study. Top Spinal Cord Inj Rehabil. 2018; 24:18-27. doi: 10.1310/sci16-00061.
Baptista RS, Moreira MCC, Pinheiro LDM, Pereira TR, Carmona GG, Freire JPD, et al. User-centered design and spatially-distributed sequential electrical stimulation in cycling for individuals with paraplegia. J Neuroeng Rehabil. 2022; 19. https://doi.org/10.1186/s12984-022-01014-6
Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 1987; 412: 84-95.
Barbeau H, Blunt R. A novel approach using body weight support to retrain gait in spastic paretic participants. In: Plasticity of Motoneuronal Connections, edited by Wernig A. New York, NY: Elsevier Science 1991: 461-474.
Bass A, Aubertin-Leheudre M, Morin SN, Gagnon DH. Preliminary training volume and progression algorithm to tackle fragility fracture risk during exoskeleton-assisted overground walking in individuals with a chronic spinal cord injury. Spinal Cord Ser Cases. 2022; 8: 29. doi: 10.1038/s41394-022-00498-7.
Baunsgaard CB, Nissen UV, Brust AK, Frotzler A, Ribeill C, Kalke YB, León N, Gómez B, Samuelsson K, Antepohl W, Holmström U, Marklund N, Glott T, Opheim A, Penalva JB, Murillo N, Nachtegaal J, Faber W, Biering-Sørensen F. Exoskeleton gait training after spinal cord injury: An exploratory study on secondary health conditions. J Rehabil Med. 2018b; 50: 806-813. doi: 10.2340/16501977-2372.
Behrman AL, Ardolino E, Vanhiel LR, Kern M, Atkinson D, Lorenz DJ, Harkema SJ. Assessment of functional improvement without compensation reduces variability of outcome measures after human spinal cord injury. Arch Phys Med Rehabil. 2012; 93: 1518-29. doi: 10.1016/j.apmr.2011.04.027.
Bekhet AH, Jahan AM, Bochkezanian V, Musselman KE, Elsareih AA, Gorgey AS. Effects of Electrical Stimulation Training on Body Composition Parameters After Spinal Cord Injury: A Systematic Review. Arch Phys Med Rehabil. 2022; 103: 1168-1178. doi: 10.1016/j.apmr.2021.09.004.
Belanger M, Stein RB, Wheeler GD, Gordon T, Leduc B. Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch Phys Med Rehabil. 2000; 81: 1090-1098.
Benito J, Kumru H, Murillo N, Costa U, Medina J, Tormos JM, Pascual-Leone A, Vidal J. Motor and gait improvement in patients with incomplete spinal cord injury induced by high-frequency repetitive transcranial magnetic stimulation. Top Spinal Cord Inj Rehabil. 2012; 18: 106-12. doi: 10.1310/sci1802-106.
Benito-Penalva JB, Opisso E, Medina J, Corrons M, Kumru H, Vidal J, Valls- Solé J. H. Reflex modulation by transcranial magnetic stimulation in spinal cord injury participants after gait training with electromechanical systems. Spinal Cord. 2010; 48: 400-406.
Benito-Penalva J, Edwards DJ, Opisso E, Cortes M, Lopez-Blazquez R, Murillo N, Costa U, Tormos JM, Vidal-Samsó J, Valls-Solé J, Medina J, European Multicenter Study about Human Spinal Cord Injury Study Group. Gait training in human spinal cord injury using electromechanical systems: effect of device type and patient characteristics. Arch Phys Med Rehabil. 2012; 93: 404-412.
Bersch I, Tesini S, Bersch U, Frotzler A. Functional electrical stimulation in spinal cord injury: Clinical evidence versus daily practice. Artificial Organs. 2015; 39: 849–854.
Bersch I, Alberty M, Fridén J. Robot-assisted training with functional electrical stimulation enhances lower extremity function after spinal cord injury. Artif Organs. 2022; 46: 2009-2014. doi: 10.1111/aor.14386.
Bittar CK, Cliquet A Jr. Effects of quadriceps and anterior tibial muscles electrical stimulation on the feet and ankles of patients with spinal cord injuries. Spinal Cord. 2010; 48: 881-5. doi: 10.1038/sc.2010.50.
Bochkezanian V, Newton RU, Trajano GS, Blazevich AJ. Effects of Neuromuscular Electrical Stimulation in People with Spinal Cord Injury. Med Sci Sports Exerc. 2018; 50: 1733-1739. doi: 10.1249/MSS.0000000000001637.
Bohannon RW, Crouch R. Minimal clinically important difference for change in 6-minute walk test distance of adults with pathology: a systematic review. J Eval Clin Pract. 2017; 23: 377-381. doi: 10.1111/jep.12629.
Bosch PR, Harris JE, Wing K; American Congress of Rehabilitation Medicine (ACRM) Stroke Movement Interventions Subcommittee. Review of therapeutic electrical stimulation for dorsiflexion assist and orthotic substitution from the American Congress of Rehabilitation Medicine stroke movement interventions subcommittee. Arch Phys Med Rehabil. 2014; 95: 390-6. doi: 10.1016/j.apmr.2013.10.017.
Brazg G, Fahey M, Holleran CL, Connolly M, Woodward J, Hennessy PW, Schmit BD, Hornby TG. Effects of Training Intensity on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study. Neurorehabil Neural Repair. 2017; 31: 944-954. doi: 10.1177/1545968317731538.
Brissot R, Gallien P, Le Bot MP, Beaubras A, Laisné D, Beillot J, Dassonville J. Clinical experience with functional electrical stimulation-assisted gait with Parastep in spinal cord-injured patients. Spine (Phila Pa 1976). 2000; 25: 501-8. doi: 10.1097/00007632-200002150-00018.
Buehner JJ, Forrest GF, Schmidt-Read M, White S, Tansey K, Basso DM. Relationship between ASIA examination and functional outcomes in the NeuroRecovery Network Locomotor Training Program. Arch Phys Med Rehabil. 2012; 93: 1530–1540.
Burns SP, Golding DG, Rolle WA Jr, Graziani V, Ditunno JF Jr. Recovery of ambulation in motor-incomplete tetraplegia. Arch Phys Med Rehabil. 1997; 78: 1169-72. doi: 10.1016/s0003-9993(97)90326-9.
Burns AS, Ditunno JF. Establishing prognosis and maximizing functional outcomes after spinal cord injury: a review of current and future directions in rehabilitation management. Spine. 2001; 26: S137-145.
Calabrò RS, Filoni S, Billeri L, Balletta T, Cannavò A, Militi A, Milardi D, Pignolo L, Naro A. Robotic Rehabilitation in Spinal Cord Injury: A Pilot Study on End-Effectors and Neurophysiological Outcomes. Ann Biomed Eng. 2021; 49: 732-745. doi: 10.1007/s10439-020-02611-z.
Calabrò RS, Billeri L, Ciappina F, Balletta T, Porcari B, Cannavò A, Pignolo L, Manuli A, Naro A. Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation. Expert Rev Med Devices. 2022; 19: 83-95. doi: 10.1080/17434440.2021.1894125.
Calvert JS, Grahn PJ, Strommen JA, Lavrov IA, Beck LA, Gill ML, Linde MB, Brown DA, Van Straaten MG, Veith DD, Lopez C, Sayenko DG, Gerasimenko YP, Edgerton VR, Zhao KD, Lee KH. Electrophysiological Guidance of Epidural Electrode Array Implantation over the Human Lumbosacral Spinal Cord to Enable Motor Function after Chronic Paralysis. J Neurotrauma. 2019; 36: 1451-1460. doi: 10.1089/neu.2018.5921.
Cardinale M, Bosco C. The use of vibration as an exercise intervention. Exerc Sport Sci Rev. 2003; 31: 3-7. doi: 10.1097/00003677-200301000-00002.
Carhart MR, He J, Herman R, D’Luzansky S, Willis WT. Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng. 2004; 12: 32-42. doi: 10.1109/TNSRE.2003.822763.
Carty A, McCormack K, Coughlan GF, Crowe L, Caulfield B. Alterations in body composition and spasticity following subtetanic neuromuscular electrical stimulation training in spinal cord injury. J Rehabil Res Dev. 2013; 50: 193-202. doi: 10.1682/jrrd.2011.11.0220.
Carvalho de Abreu DC, Junior AC, Rondina JM, Cendes F. Muscle hypertrophy in quadriplegics with combined electrical stimulation and body weight support training. Int J Rehabil Res. 2008; 31: 171-175.
Carvalho de Abreu DC, Cliquet A, Jr., Rondina JM, Cendes F. Electrical stimulation during gait promotes increase of muscle cross-sectional area in quadriplegics: a preliminary study. Clin Orthop Relat Res. 2009; 467: 553-557.
Castro MJ, Apple DF, Jr., Hillegass EA, Dudley GA. Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. Eur J Appl Physiol Occup Physiol. 1999a; 80: 373-378.
Castro MJ, Apple DF, Jr., Staron RS, Campos GE, Dudley GA. Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury. J Appl Physiol. 1999b; 86: 350-358.
Cathomen A, Maier D, Kriz J, Abel R, Röhrich F, Baumberger M, Scivoletto G, Weidner N, Rupp R, Jutzeler CR, Steeves JD; EMSCI study group; Curt A, Bolliger M. Walking Outcome After Traumatic Paraplegic Spinal Cord Injury: The Function of Which Myotomes Makes a Difference? Neurorehabil Neural Repair. 2023 May;37(5):316-327. doi: 10.1177/15459683231166937. Epub 2023 Apr 11. PMID: 37039327; PMCID: PMC10272624.
Chen G, Patten C. Treadmill training with harness support: selection of parameters for individuals with poststroke hemiparesis. J Rehabil Res Dev. 2006; 43: 485-98. doi: 10.1682/jrrd.2005.04.0063.
Cheung EYY, Yu KKK, Kwan RLC, Ng CKM, Chau RMW, Cheing GLY. Effect of EMG-biofeedback robotic-assisted body weight supported treadmill training on walking ability and cardiopulmonary function on people with subacute spinal cord injuries – a randomized controlled trial. BMC Neurol. 2019; 19: 140. doi: 10.1186/s12883-019-1361-z.
Cho N, Squair JW, Aureli V, James ND, Bole-Feysot L, Dewany I, Hankov N, Baud L, Leonhartsberger A, Sveistyte K, Skinnider MA, Gautier M, Laskaratos A, Galan K, Goubran M, Ravier J, Merlos F, Batti L, Pages S, Berard N, Intering N, Varescon C, Watrin A, Duguet L, Carda S, Bartholdi KA, Hutson TH, Kathe C, Hodara M, Anderson MA, Draganski B, Demesmaeker R, Asboth L, Barraud Q, Bloch J, Courtine G. Hypothalamic deep brain stimulation augments walking after spinal cord injury. Nat Med. 2024; 30: 3676-3686. doi: 10.1038/s41591-024-03306-x.
Choi S, Kim SW, Jeon HR, Lee JS, Kim DY, Lee JW. Feasibility of Robot-Assisted Gait Training with an End-Effector Type Device for Various Neurologic Disorders. Brain Neurorehabil. 2019; 13: e6. doi: 10.12786/bn.2020.13.e6.
Chou RC, Taylor JA, Solinsky R. Effects of hybrid-functional electrical stimulation (FES) rowing whole-body exercise on neurologic improvement in subacute spinal cord injury: secondary outcomes analysis of a randomized controlled trial. Spinal Cord. 2020; 58: 914-920. doi: 10.1038/s41393-020-0445-3.
Çinar Ç, Önes K, Yildirim MA, Göksenoglu G. Comparison of the Patients with Complete and Incomplete Spinal Cord Injury Administered Robotic-Assisted Gait Training Treatment. J PMR Sci. 2020; 23: 12-9. DOI: 10.31609/jpmrs.2019-70083
Çinar Ç, Yildirim MA, Öneş K, Gökşenoğlu G. Effect of robotic-assisted gait training on functional status, walking and quality of life in complete spinal cord injury. Int J Rehabil Res. 2021; 44: 262-268. doi: 10.1097/MRR.0000000000000486.
Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord. 2001; 39: 252-5. doi: 10.1038/sj.sc.3101154. Corti M, Patten C, Triggs W. Repetitive transcranial magnetic stimulation of motor cortex after stroke: A focused review. Am J Phys Med Rehabil. 2012; 91: 254-270.
Couturier JL. Efficacy of rapid-rate repetitive transcranial magnetic stimulation in the treatment of depression: a systematic review and meta-analysis. J Psychiatry Neurosci. 2005; 30: 83-90.
Covarrubias-Escudero F, Rivera-Lillo G, Torres-Castro R, Varas-Díaz G. Effects of body weight-support treadmill training on postural sway and gait independence in patients with chronic spinal cord injury. J Spinal Cord Med. 2019; 42: 57-64. doi: 10.1080/10790268.2017.1389676.
Crameri RM, Weston A, Climstein M, Davis GM, Sutton JR. Effects of electrical stimulation-induced leg training on skeletal muscle adaptability in spinal cord injury. Scand J Med Sci Sports. 2002; 12: 316-322.
Crosbie J, Russold M, Raymond J, Middleton JW, Davis GM. Functional electrical stimulation-supported interval training following sensorimotor-complete spinal cord injury: a case series. Neuromodulation. 2009; 12: 224-31. doi: 10.1111/j.1525-1403.2009.00219.x.
Crozier KS, Graziani V, Ditunno JF Jr, Herbison GJ. Spinal cord injury: prognosis for ambulation based on sensory examination in patients who are initially motor complete. Arch Phys Med Rehabil. 1991 Feb;72(2):119-21. PMID: 1991012.
Danner SM, Krenn M, Hofstoetter US, Toth A, Mayr W, Minassian K. Body Position Influences Which Neural Structures Are Recruited by Lumbar Transcutaneous Spinal Cord Stimulation. PLoS One. 2016; 11: e0147479. doi: 10.1371/journal.pone.0147479.
Darrow D, Balser D, Netoff TI, Krassioukov A, Phillips A, Parr A, Samadani U. Epidural Spinal Cord Stimulation Facilitates Immediate Restoration of Dormant Motor and Autonomic Supraspinal Pathways after Chronic Neurologically Complete Spinal Cord Injury. J Neurotrauma. 2019; 36: 2325-2336. doi: 10.1089/neu.2018.6006.
Darrow DP, Balser DY, Freeman D, Pelrine E, Krassioukov A, Phillips A, Netoff T, Parr A, Samadani U. Effect of epidural spinal cord stimulation after chronic spinal cord injury on volitional movement and cardiovascular function: study protocol for the phase II open label controlled E-STAND trial. BMJ Open. 2022; 12: e059126. doi: 10.1136/bmjopen-2021-059126.
de Freitas GR, Szpoganicz C, Ilha J. Does Neuromuscular Electrical Stimulation Therapy Increase Voluntary Muscle Strength After Spinal Cord Injury? A Systematic Review. Top Spinal Cord Inj Rehabil. 2018; 24: 6-17. doi: 10.1310/sci16-00048.
De Miguel-Rubio A, Rubio MD, Salazar A, Moral-Munoz JA, Requena F, Camacho R, Lucena-Anton D. Is Virtual Reality Effective for Balance Recovery in Patients with Spinal Cord Injury? A Systematic Review and Meta-Analysis. J Clin Med. 2020; 9: 2861. doi: 10.3390/jcm9092861.
De Ridder D, Manning P, Cape G, Vanneste S, Langguth B, Glue P. Chapter 2 – Pathophysiology-Based Neuromodulation for Addictions: An Overview. Neuropathology of Drug Addictions and Substance Misuse. 2016: 1: 14-24.
Deley G, Denuziller J, Babault N, Taylor JA. Effects of electrical stimulation pattern on quadriceps isometric force and fatigue in individuals with spinal cord injury. Muscle Nerve. 2015; 52: 260–264.
Demchak TJ, Linderman JK, Mysiw WJ, Jackson R, Suun J, Devor ST. Effects of functional electric stimulation cycle ergometry training on lower limb musculature in acute sci individuals. J Sports Sci Med. 2005; 4: 263-71.
Deng L, Song N, Wang J, Wang X, Chen Y, Wu S. Effect of Intermittent Theta Burst Stimulation Dual-Target Stimulation on Lower Limb Function in Patients with Incomplete Spinal Cord Injury: A Randomized, Single-Blind, Sham-Controlled Study. World Neurosurg. 2024; 190:e46-e59. doi: 10.1016/j.wneu.2024.06.141.
DiPiro ND, Holthaus KD, Morgan PJ, Embry AE, Perry LA, Bowden MG, Gregory CM. Lower Extremity Strength Is Correlated with Walking Function After Incomplete SCI. Top Spinal Cord Inj Rehabil. 2015; 21: 133-9. doi: 10.1310/sci2102-133.
Ditunno PL, Patrick M, Stineman M, Ditunno JF. Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord. 2008 Jul;46(7):500-6. doi: 10.1038/sj.sc.3102172. Epub 2008 Jan 22. PMID: 18209742.
do Espírito Santo CC, Swarowsky A, Recchia TL, Lopes APF, Ilha J. Is body weight-support treadmill training effective in increasing muscle trophism after traumatic spinal cord injury? A systematic review. Spinal Cord. 2015; 53: 176-181. doi: 10.1038/sc.2014.198.
Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M, Scott M; Spinal Cord Injury Locomotor Trial Group. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006; 66: 484-93. doi: 10.1212/01.wnl.0000202600.72018.39.
Dobkin B, Barbeau H, Deforge D, Ditunno J, Elashoff R, Apple D, Basso M, Behrman A, Fugate L, Harkema S, Saulino M, Scott M, Trial Group TS. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized spinal cord injury locomotor trial. Neurorehabil Neural Repair. 2007; 21: 25-35.
Dolbow DR, Gorgey AS, Sutor TW, Bochkezanian V, Musselman K. Invasive and Non-Invasive Approaches of Electrical Stimulation to Improve Physical Functioning after Spinal Cord Injury. J Clin Med. 2021; 10: 5356. doi: 10.3390/jcm10225356.
Donati AR, Shokur S, Morya E, Campos DS, Moioli RC, Gitti CM, Augusto PB, Tripodi S, Pires CG, Pereira GA, Brasil FL, Gallo S, Lin AA, Takigami AK, Aratanha MA, Joshi S, Bleuler H, Cheng G, Rudolph A, Nicolelis MA. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients. Sci Rep. 2016; 6: 30383. doi: 10.1038/srep30383.
Draganich C, Weber KA 2nd, Thornton WA, Berliner JC, Sevigny M, Charlifue S, Tefertiller C, Smith AC. Predicting Outdoor Walking 1 Year After Spinal Cord Injury: A Retrospective, Multisite External Validation Study. J Neurol Phys Ther. 2023 Jul 1;47(3):155-161. doi: 10.1097/NPT.0000000000000428. Epub 2023 Jan 10. PMID: 36630206; PMCID: PMC10329972.
Duan R, Qu M, Yuan Y, Lin M, Liu T, Huang W, Gao J, Zhang M, Yu X. Clinical Benefit of Rehabilitation Training in Spinal Cord Injury: A Systematic Review and Meta-Analysis. Spine (Phila Pa 1976). 2021; 46: E398-E410. doi: 10.1097/BRS.0000000000003789.
Duddy D, Doherty R, Connolly J, McNally S, Loughrey J, Faulkner M. The Effects of Powered Exoskeleton Gait Training on Cardiovascular Function and Gait Performance: A Systematic Review. Sensors (Basel). 2021; 21: 3207. doi: 10.3390/s21093207.
Duffell LD, Donaldson Nde N, Perkins TA, Rushton DN, Hunt KJ, Kakebeeke TH, Newham DJ. Long-term intensive electrically stimulated cycling by spinal cord-injured people: effect on muscle properties and their relation to power output. Muscle Nerve. 2008; 38: 1304-1311.
Duffell LD, Paddison S, Alahmary AF, Donaldson N, Burridge J. The effects of FES cycling combined with virtual reality racing biofeedback on voluntary function after incomplete SCI: a pilot study. J Neuroeng Rehabil. 2019; 16: 149. doi: 10.1186/s12984-019-0619-4
Edgerton VR, de Guzman CP, Gregor RJ, Roy RR, Hodgson JA, Lovely RG. Trainability of the spinal cord to generate hindlimb stepping patterns in adult spinalized cats. In: Neurobiological basis of human locomotion, edited by Shimamura M, Grillner S, and Edgerton VR. Tokyo: Japan Scientific Societies 1991: 411-423.
Edwards DJ, Forrest G, Cortes M, Weightman MM, Sadowsky C, Chang SH, Furman K, Bialek A, Prokup S, Carlow J, VanHiel L, Kemp L, Musick D, Campo M, Jayaraman A. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial. Spinal Cord. 2022; 60: 522-532. doi: 10.1038/s41393-022-00751-8.
El Semary MM. Daker LI. Influence of percentage of body-weight support on gait in patients with traumatic incomplete spinal cord injury. Egypt J Neurol Psychiat Neurosurg. 2019: 55. https://doi.org/10.1186/s41983-019-0076-9
Elahi B, Elahi B, Chen R. Effect of transcranial magnetic stimulation on Parkinson motor function–systematic review of controlled clinical trials. Mov Disord. 2009; 24: 357-63. doi: 10.1002/mds.22364.
Erickson ML, Ryan TE, Backus D, McCully KK. Endurance neuromuscular electrical stimulation training improves skeletal muscle oxidative capacity in individuals with motor-complete spinal cord injury. Muscle Nerve. 2017; 55: 669-675. doi: 10.1002/mus.25393.
Esclarín-Ruz A, Alcobendas-Maestro M, Casado-Lopez R, Perez-Mateos G, Florido-Sanchez MA, Gonzalez-Valdizan E, Martin JL. A comparison of robotic walking therapy and conventional walking therapy in individuals with upper versus lower motor neuron lesions: a randomized controlled trial. Arch Phys Med Rehabil. 2014; 95: 1023-31. doi: 10.1016/j.apmr.2013.12.017.
Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012; 91: 911-21.
Esquenazi A, Talaty M. Robotics for Lower Limb Rehabilitation. Phys Med Rehabil Clin N Am. 2019; 30: 385-397. doi: 10.1016/j.pmr.2018.12.012.
Estes S, Zarkou A, Hope JM, Suri C, Field-Fote EC. Combined Transcutaneous Spinal Stimulation and Locomotor Training to Improve Walking Function and Reduce Spasticity in Subacute Spinal Cord Injury: A Randomized Study of Clinical Feasibility and Efficacy. J Clin Med. 2021; 10: 1167. doi: 10.3390/jcm10061167.
Ettema S, Pennink GH, Buurke TJW, David S, van Bennekom CAM, Houdijk H. Clinical indications and protocol considerations for selecting initial body weight support levels in gait rehabilitation: a systematic review. J Neuroeng Rehabil. 2024; 21: 97. doi: 10.1186/s12984-024-01389-8.
Evans NH, Suri C, Field-Fote EC. Walking and Balance Outcomes Are Improved Following Brief Intensive Locomotor Skill Training but Are Not Augmented by Transcranial Direct Current Stimulation in Persons With Chronic Spinal Cord Injury. Front Hum Neurosci. 2022; 16: 849297. doi: 10.3389/fnhum.2022.849297.
Evans NH, Field-Fote EC. A Pilot Study of Intensive Locomotor-Related Skill Training and Transcranial Direct Current Stimulation in Chronic Spinal Cord Injury. J Neurol Phys Ther. 2022; 46: 281-292. doi: 10.1097/NPT.0000000000000403.
Evans NH, Field-Fote EC. Brief High-Velocity Motor Skill Training Increases Step Frequency and Improves Length/Frequency Coordination in Slow Walkers With Chronic Motor-Incomplete Spinal Cord Injury. Arch Phys Med Rehabil. 2024; 105: 1289-1298. doi: 10.1016/j.apmr.2024.02.725.
Everaert DG, Okuma Y, Abdollah V, Ho C. Timing and dosage of FES cycling early after acute spinal cord injury: A case series report. J Spinal Cord Med. 2021; 44: S250-S255. doi: 10.1080/10790268.2021.1953323.
Fahey M, Brazg G, Henderson CE, Plawecki A, Lucas E, Reisman DS, Schmit BD, Hornby TG. The Value of High Intensity Locomotor Training Applied to Patients With Acute-Onset Neurologic Injury. Arch Phys Med Rehabil. 2022; 103: S178-S188. doi: 10.1016/j.apmr.2020.09.399.
Fang CY, Tsai JL, Li GS, Lien AS, Chang YJ. Effects of Robot-Assisted Gait Training in Individuals with Spinal Cord Injury: A Meta-analysis. Biomed Res Int. 2020; 2020: 2102785. doi: 10.1155/2020/2102785.
Farkas GJ, Gorgey AS, Dolbow DR, Berg AS, Gater DR Jr. Energy Expenditure, Cardiorespiratory Fitness, and Body Composition Following Arm Cycling or Functional Electrical Stimulation Exercises in Spinal Cord Injury: A 16-Week Randomized Controlled Trial. Top Spinal Cord Inj Rehabil. 2021; 27: 121-134. doi: 10.46292/sci20-00065.
Fathe MA, Farhat F, Karim SK, Moalla W. Feasibility Telerehabilitation at Home on Body Composition, Anthropometric Measures and Muscular Strength After Interruption 4-5 Years of Spinal Cord Injury: Serial Cases Study on Islamic State of Iraq and Syria War Survivors in Iraq. Telemed J E Health. 2024; 30: 2181-2193. doi: 10.1089/tmj.2024.0078.
Federici S, Meloni F, Bracalenti M, De Filippis ML. The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: A systematic review. NeuroRehabilitation. 2015; 37: 321-40. doi: 10.3233/NRE-151265.
Fenton JM, King JA, Hoekstra SP, Valentino SE, Phillips SM, Goosey-Tolfrey VL. Protocols aiming to increase muscle mass in persons with motor complete spinal cord injury: a systematic review. Disabil Rehabil. 2023; 45: 1433-1443. doi: 10.1080/09638288.2022.2063420.
Ferguson SL. Is the End of the Pandemic the End of Telerehabilitation? Phys Ther. 2022; 102: pzac004. doi: 10.1093/ptj/pzac004
Field-Fote EC. Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Arch Phys Med Rehabil. 2001; 82: 818-824.
Field-Fote EC, Tepavac D. Improved intralimb coordination in people with incomplete spinal cord injury following training with body weight support and electrical stimulation. Phys Ther. 2002; 82: 707-715.
Field-Fote EC, Lindley SD, Sherman AL. Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes. J Neurol Phys Ther. 2005; 29: 127-137.
Field-Fote EC, Roach KE. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: A randomized clinical trial. Physical Therapy. 2011; 91: 48-60.
Fleerkotte BM, Koopman B, Buurke JH, van Asseldonk EH, van der Kooij H, Rietman JS. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. J Neuroeng Rehabil. 2014; 11: 26. doi: 10.1186/1743-0003-11-26.
Foo D, Rossier AB. 1981. Preoperative neurological status in predicting surgical outcome of spinal epidural hematomas. Surgical Neurology, 15(5), 389-401
Foo, D. Spinal cord injury in forty-four patients with cervical spondylosis. Spinal Cord 24, 301–306 (1986). https://doi.org/10.1038/sc.1986.42
Fornusek C, Davis GM, Russold MF. Pilot study of the effect of low-cadence functional electrical stimulation cycling after spinal cord injury on thigh girth and strength. Arch Phys Med Rehabil. 2013; 94: 990-993.
Forrest GF, Hutchinson K, Lorenz DJ, Buehner JJ, VanHiel LR. Are the 10 meter and 6 minute walk tests redundant in patients with spinal cord injury? PLoS ONE. 2014; 9: e94108.
Franceschini M, Baratta S, Zampolini M, Loria D, Lotta S. Reciprocating gait orthoses: a multicenter study of their use by spinal cord injured patients. Arch Phys Med Rehabil. 1997; 78: 582-586.
Frasuńska J, Tederko P, Wojdasiewicz P, Mycielski J, Turczyn P, Tarnacka B. Compliance with prescriptions for wheelchairs, walking aids, orthotics, and pressure-relieving devices in patients with traumatic spinal cord injury. Eur J Phys Rehabil Med. 2020; 56: 160-168. doi: 10.23736/S1973-9087.19.05920-3.
Fritz SL, Merlo-Rains AM, Rivers ED, Peters DM, Goodman A, Watson ET, Carmichael BM, McClenaghan BA. An intensive intervention for improving gait, balance, and mobility in individuals with chronic incomplete spinal cord injury: a pilot study of activity tolerance and benefits. Arch Phys Med Rehabil. 2011; 92: 1776-84. doi: 10.1016/j.apmr.2011.05.006.
Gagnon DH, Escalona MJ, Vermette M, Carvalho LP, Karelis AD, Duclos C, Aubertin-Leheudre M. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety. J Neuroeng Rehabil. 2018; 15: 12. doi: 10.1186/s12984-018-0354-2.
Galea MP, Dunlop SA, Geraghty T, Davis GM, Nunn A, Olenko L; SCIPA Switch-On Trial Collaborators. SCIPA Full-On: A Randomized Controlled Trial Comparing Intensive Whole-Body Exercise and Upper Body Exercise After Spinal Cord Injury. Neurorehabil Neural Repair. 2018; 32: 557-567. doi: 10.1177/1545968318771213.
Galen SS, Clarke CJ, Mclean AN, Allan DB, Conway BA. Isometric hip and knee torque measurements as an outcome measure in robot assisted gait training. NeuroRehabilitation. 2014; 34: 287-295.
Gallien P, Brissot R, Eyssette M, Tell L, Barat M, Wiart L, Petit H. Restoration of gait by functional electrical stimulation for spinal cord injured patients. Paraplegia. 1995; 33: 660-664.
Gandolfi M, Valè N, Dimitrova E, Zanolin ME, Mattiuz N, Battistuzzi E, Beccari M, Geroin C, Picelli A, Waldner A, Smania N. Robot-Assisted Stair Climbing Training on Postural Control and Sensory Integration Processes in Chronic Post-stroke Patients: A Randomized Controlled Clinical Trial. Front Neurosci. 2019; 13: 1143. doi: 10.3389/fnins.2019.01143.
García-Rudolph A, Wright MA, Yepes C, Murillo N, Conesa L, Soriano I, Bautista R, Opisso E, Tormos JM, Medina J. Effectiveness and efficiency of telerehabilitation on functionality after spinal cord injury: A matched case-control study. PM R. 2024a; 16: 815-825. doi: 10.1002/pmrj.13125.
García-Rudolph A, Finestres J, Wright MA, Casanovas JM, Opisso E. Effectiveness and efficiency of aquatic therapy on independence in activities of daily living and mobility in post-acute spinal cord injury: A matched case-control study. Physiother Res Int. 2024b; 29: e2141. doi: 10.1002/pri.2141.
Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J Neuroeng Rehabil. 2018; 15: 46. doi: 10.1186/s12984-018-0383-x.
Gibbons RS, Shave RE, Gall A, Andrews BJ. FES-rowing in tetraplegia: a preliminary report. Spinal Cord. 2014; 52: 880-886.
Gil-Agudo Á, Megía-García Á, Pons JL, Sinovas-Alonso I, Comino-Suárez N, Lozano-Berrio V, Del-Ama AJ. Exoskeleton-based training improves walking independence in incomplete spinal cord injury patients: results from a randomized controlled trial. J Neuroeng Rehabil. 2023; 20: 36. doi: 10.1186/s12984-023-01158-z. Erratum in: J Neuroeng Rehabil. 2023; 20:160. doi: 10.1186/s12984-023-01281-x.
Gill ML, Grahn PJ, Calvert JS, Linde MB, Lavrov IA, Strommen JA, Beck LA, Sayenko DG, Van Straaten MG, Drubach DI, Veith DD, Thoreson AR, Lopez C, Gerasimenko YP, Edgerton VR, Lee KH, Zhao KD. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med. 2018; 24: 1677-1682. doi: 10.1038/s41591-018-0175-7. Erratum in: Nat Med. 2018; 24: 1942. doi: 10.1038/s41591-018-0248-7.
Gorassini MA, Norton JA, Nevett-Duchcherer J, Roy FD, Yang J. Changes in locomotor muscle activity after treadmill training in participants with incomplete spinal cord injury. J Neurophysiol. 2009; 101: 969-979.
Gorgey AS, Mather KJ, Cupp HR, Gater DR. Effects of resistance training on adiposity and metabolism after spinal cord injury. Med Sci Sports Exerc. 2012; 44:165-74. doi: 10.1249/MSS.0b013e31822672aa.
Gorgey AS, Dolbow DR, Cifu DX, Gater DR. Neuromuscular electrical stimulation attenuates thigh skeletal muscles atrophy but not trunk muscles after spinal cord injury. J Electromyogr Kinesiol. 2013; 23: 977-84. doi: 10.1016/j.jelekin.2013.04.007.
Gorgey AS. Robotic exoskeletons: The current pros and cons. World J Orthop. 2018; 9: 112-119. doi: 10.5312/wjo.v9.i9.112.
Gorgey AS, Khalil RE, Gill R, Gater DR, Lavis TD, Cardozo CP, Adler RA. Low-Dose Testosterone and Evoked Resistance Exercise after Spinal Cord Injury on Cardio-Metabolic Risk Factors: An Open-Label Randomized Clinical Trial. J Neurotrauma. 2019; 36: 2631-2645. doi: 10.1089/neu.2018.6136.
Gorgey AS, Abilmona SM, Sima A, Khalil RE, Khan R, Adler RA. A secondary analysis of testosterone and electrically evoked resistance training versus testosterone only (TEREX-SCI) on untrained muscles after spinal cord injury: a pilot randomized clinical trial. Spinal Cord. 2020a; 58: 298-308. doi: 10.1038/s41393-019-0364-3.
Gorgey AS, Gill S, Holman ME, Davis JC, Atri R, Bai O, Goetz L, Lester DL, Trainer R, Lavis TD. The feasibility of using exoskeletal-assisted walking with epidural stimulation: a case report study. Ann Clin Transl Neurol. 2020b; 7: 259-265. doi: 10.1002/acn3.50983.
Gorgey AS, Lai RE, Khalil RE, Rivers J, Cardozo C, Chen Q, Lesnefsky EJ. Neuromuscular electrical stimulation resistance training enhances oxygen uptake and ventilatory efficiency independent of mitochondrial complexes after spinal cord injury: a randomized clinical trial. J Appl Physiol (1985). 202; 131: 265-276. doi: 10.1152/japplphysiol.01029.2020.
Gorman PH, Scott W, York H, Theyagaraj M, Price-Miller N, McQuaid J, Eyvazzadeh M, Ivey FM, Macko RF. Robotically assisted treadmill exercise training for improving peak fitness in chronic motor incomplete spinal cord injury: A randomized controlled trial. J Spinal Cord Med. 2016; 39: 32-44.
Govil K, Noohu MM. Effect of EMG biofeedback training of gluteus maximus muscle on gait parameters in incomplete spinal cord injury. Neurorehabilitation. 2013; 33: 147-152.
Granat MH, Ferguson AC, Andrews BJ, Delargy M. The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury–observed benefits during gait studies. Paraplegia. 1993; 31: 207-215.
Grasmücke D, Zieriacks A, Jansen O, Fisahn C, Sczesny-Kaiser M, Wessling M, Meindl RC, Schildhauer TA, Aach M. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level. Neurosurg Focus. 2017; 42: E15. doi: 10.3171/2017.2.FOCUS171.
Gregory CM, Bowden MG, Jayaraman A, Shah P, Behrman A, Kautz SA, Vandenborne K. Resistance training and locomotor recovery after incomplete spinal cord injury: a case series. Spinal Cord. 2007; 45: 522-530.
Griffin L, Decker MJ, Hwang JY, Wang B, Kitchen K, Ding Z, Ivy JL. Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol. 2009; 19: 614-22. doi: 10.1016/j.jelekin.2008.03.002.
Guanziroli E, Cazzaniga M, Colombo L, Basilico S, Legnani G, Molteni F. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control. Eur J Phys Rehabil Med. 2019; 55: 209-216. doi: 10.23736/S1973-9087.18.05308-X.
Gurcay E, Karaahmet OZ, Cankurtaran D, Nazlı F, Umay E, Güzel Ş, Gurcay AG. Functional electrical stimulation cycling in patients with chronic spinal cord injury: a pilot study. Int J Neurosci. 2022; 132: 421-427. doi: 10.1080/00207454.2021.1929212.
Harkema SJ, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Wilhite A, Reic E, Grossman RG, Edgerton VE. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011; 377: 1938-1947.
Harkema SJ, Schmidt-Read M, Lorenz DJ, Edgerton VR, Behrman AL. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation. Arch Phys Med Rehabil. 2012; 93: 1508-17. Doi: 10.1016/j.apmr.2011.01.024.
Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S. Mobility outcomes following five training sessions with a powered exoskeleton. Top Spinal Cord Inj Rehabil. 2015; 21: 93–99.
Harvey LA, Fornusek C, Bowden JL, Pontifex N, Glinsky J, Middleton JW, Gandevia SC, Davis GM. Electrical stimulation plus progressive resistance training for leg strength in spinal cord injury: A randomized controlled trial. Spinal Cord. 2010; 48: 570-575.
Hawkins KA, DeMark LA, Vistamehr A, Snyder HJ, Conroy C, Wauneka C, Tonuzi G, Fuller DD, Clark DJ, Fox EJ. Feasibility of transcutaneous spinal direct current stimulation combined with locomotor training after spinal cord injury. Spinal Cord. 2022; 60: 971-977. doi: 10.1038/s41393-022-00801-1.
Hayes HB, Jayaraman A, Herrmann M, Mitchell GS, Rymer WZ, Trumbower RD. Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial. Neurology. 2014; 82: 104-13. doi: 10.1212/01.WNL.0000437416.34298.43.
Heinemann AW, Kinnett-Hopkins D, Mummidisetty CK, Bond RA, Ehrlich-Jones L, Furbish C, Field-Fote E, Jayaraman A. Appraisals of robotic locomotor exoskeletons for gait: focus group insights from potential users with spinal cord injuries. Disabil Rehabil Assist Technol. 2020; 15: 762-772. doi: 10.1080/17483107.2020.1745910.
Henderson A, Korner-Bitensky N, Levin M. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil. 2007; 14: 52-61. doi: 10.1310/tsr1402-52.
Herman R, He J, D’Luzansky S, Willis W, Dilli S. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord. 2002; 40: 65-68.
Hernández de Paz R, Serrano-Muñoz D, Pérez-Nombela S, Bravo-Esteban E, Avendaño-Coy J, Gómez-Soriano J. Combining transcranial direct-current stimulation with gait training in patients with neurological disorders: a systematic review. J Neuroeng Rehabil. 2019; 16: 114. doi: 10.1186/s12984-019-0591-z.
Herrera-Valenzuela D, Díaz-Peña L, Redondo-Galán C, Arroyo MJ, Cascante-Gutiérrez L, Gil-Agudo Á, Moreno JC, Del-Ama AJ. A qualitative study to elicit user requirements for lower limb wearable exoskeletons for gait rehabilitation in spinal cord injury. J Neuroeng Rehabil. 2023; 20: 138. doi: 10.1186/s12984-023-01264-y.
Hesse S, Werner C, Bardeleben A. Electromechanical gait training with functional electrical stimulation: case studies in spinal cord injury. Spinal Cord. 2004; 42: 346-352.
Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 2010; 7: 30. doi: 10.1186/1743-0003-7-30.
Hicks AL, Adams MM, Martin Ginis K, Giangregorio L, Latimer A, Phillips SM, McCartney N. Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being. Spinal Cord. 2005; 43: 291-298.
Hicks KE, Zhao Y, Fallah N, Rivers CS, Noonan VK, Plashkes T, Wai EK, Roffey DM, Tsai EC, Paquet J, Attabib N, Marion T, Ahn H, Phan P; RHSCIR Network. A simplified clinical prediction rule for prognosticating independent walking after spinal cord injury: a prospective study from a Canadian multicenter spinal cord injury registry. Spine J. 2017; 17: 1383-1392. doi: 10.1016/j.spinee.2017.05.031.
Hitzig SL, Craven BC, Panjwani A, Kapadia N, Giangregorio LM, Richards K, Masani K, Popovic MR. Randomized trial of functional electrical stimulation therapy for walking in incomplete spinal cord injury: effects on quality of life and community participation. Top Spinal Cord Inj Rehabil. 2013; 19: 245-258.
Hjeltnes N, Lannem A. Functional neuromuscular stimulation in 4 patients with complete paraplegia. Paraplegia. 1990; 28: 235-243.
Hofer AS, Schwab ME. Enhancing rehabilitation and functional recovery after brain and spinal cord trauma with electrical neuromodulation. Curr Opin Neurol. 2019; 32: 828-835. doi: 10.1097/WCO.0000000000000750.
Hofstoetter US, Hofer C, Kern H, Danner SM, Mayr W, Dimitrijevic MR, Minassian K. Effects of transcutaneous spinal cord stimulation on voluntary locomotor activity in an incomplete spinal cord injured individual. Biomed Tech (Berl). 2013; 58:/j/bmte.2013.58.issue-s1-A/bmt-2013-4014/bmt-2013-4014.xml. doi: 10.1515/bmt-2013-4014.
Hofstoetter US, Krenn M, Danner SM, Hofer C, Kern H, McKay WB, Mayr W, Minassian K. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals. Artif Organs. 2015; 39: E176-86. doi: 10.1111/aor.12615.
Hong C, San Luis EB, Chung S. Follow-up study on the use of leg braces issued to spinal cord injury patients. Spinal Cord. 1990; 28: 172-177.
Hong E, Gorman PH, Forrest GF, Asselin PK, Knezevic S, Scott W, Wojciehowski SB, Kornfeld S, Spungen AM. Mobility Skills With Exoskeletal-Assisted Walking in Persons With SCI: Results From a Three Center Randomized Clinical Trial. Front Robot AI. 2020; 7: 93. doi: 10.3389/frobt.2020.00093.
Hong HA, Walden K, Laskin JJ, Wang D, Kurban D, Cheng CL, Guilbault L, Dagley E, Wong C, McCullum S, Gagnon DH, Lemay JF, Noonan VK, Musselman KE; Canadian SCI Standing and Walking Measures Group. Using the Standing and Walking Assessment Tool at Discharge Predicts Community Outdoor Walking Capacity in Persons With Traumatic Spinal Cord Injury. Phys Ther. 2023; 103: pzad106. doi: 10.1093/ptj/pzad106.
Hornby GT, Campbell DD, Zemon DH, Kahn JH. Clinical and quantitative evaluation of robotic-assisted treadmill walking to retrain ambulation after spinal cord injury. Topics in Spinal Cord Injury Rehabilitation. 2005a; 11: 1-17.
Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther. 2005b; 85: 52-66.
Huang L, Huang HL, Dang XW, Wang YJ. Effect of Body Weight Support Training on Lower Extremity Motor Function in Patients With Spinal Cord Injury: A Systematic Review and Meta-analysis. Am J Phys Med Rehabil. 2024; 103: 149-157. doi: 10.1097/PHM.0000000000002320.
Hussey RW, Stauffer ES. Spinal cord injury: requirements for ambulation. Arch Phys Med Rehabil. 1973 Dec;54(12):544-7. PMID: 4759444.
In T, Jung K, Lee MG, Cho HY. Whole-body vibration improves ankle spasticity, balance, and walking ability in individuals with incomplete cervical spinal cord injury. NeuroRehabilitation. 2018; 42: 491-497. doi: 10.3233/NRE-172333.
Ionite C, Rotariu M, Turnea M, Ilea M, Condurache I. A Review about the Effectiveness of Virtual Therapy in the Recovery of Patients with Spinal Cord Injuries. Journal of Men’s Health. 2022; 18: 1-12. DOI: 10.31083/j.jomh1808160
Ivey FM, Stookey AD, Hafer-Macko CE, Ryan AS, Macko RF. Higher Treadmill Training Intensity to Address Functional Aerobic Impairment after Stroke. J Stroke Cerebrovasc Dis. 2015; 24: 2539-46. doi: 10.1016/j.jstrokecerebrovasdis.2015.07.002.
Jamwal PK, Hussain S, Ghayesh MH. Robotic orthoses for gait rehabilitation: An overview of mechanical design and control strategies. Proc Inst Mech Eng H. 2020; 234: 444-457. doi: 10.1177/0954411919898293.
Jansen O, Schildhauer TA, Meindl RC, Tegenthoff M, Schwenkreis P, Sczesny-Kaiser M, Grasmücke D, Fisahn C, Aach M. Functional Outcome of Neurologic-Controlled HAL-Exoskeletal Neurorehabilitation in Chronic Spinal Cord Injury: A Pilot With One Year Treatment and Variable Treatment Frequency. Global Spine J. 2017a; 7: 735-743. doi: 10.1177/2192568217713754.
Jansen O, Grasmuecke D, Meindl RC, Tegenthoff M, Schwenkreis P, Sczesny-Kaiser M, Wessling M, Schildhauer TA, Fisahn C, Aach M. Hybrid Assistive Limb Exoskeleton HAL in the Rehabilitation of Chronic Spinal Cord Injury: Proof of Concept; the Results in 21 Patients. World Neurosurg. 2017b; 110:e73-e78. doi: 10.1016/j.wneu.2017.10.080.
Janssen TW, Pringle DD. Effects of modified electrical stimulation-induced leg cycle ergometer training for individuals with spinal cord injury. J Rehabil Res Dev. 2008; 45: 819-830.
Jayaraman A, Shah P, Gregory C, Bowden M, Stevens J, Bishop M, Walter G, Behrman A, Vandenborne K. Locomotor training and muscle function after incomplete spinal cord injury: case series. J of Spinal Cord Med. 2008; 31: 185-193.
Jo HJ, Richardson MSA, Oudega M, Perez MA. Paired corticospinal-motoneuronal stimulation and exercise after spinal cord injury. J Spinal Cord Med. 2021; 44: S23-S27. doi: 10.1080/10790268.2021.1970908.
Jo HJ, Perez MA. Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury. Brain. 2020; 143: 1368-1382. doi: 10.1093/brain/awaa052.
Johnston TE, Marino RJ, Oleson CV, Schmidt-Read M, Leiby BE, Sendecki J, Singh H, Modlesky CM. Musculoskeletal Effects of 2 Functional Electrical Stimulation Cycling Paradigms Conducted at Different Cadences for People With Spinal Cord Injury: A Pilot Study. Arch Phys Med Rehabil. 2016; 97: 1413-1422. doi: 10.1016/j.apmr.2015.11.014.
Jones ML, Evans N, Tefertiller C, Backus D, Sweatman M, Tansey K, Morrison S. Activity-based therapy for recovery of walking in individuals with chronic spinal cord injury: results from a randomized clinical trial. Arch Phys Med Rehabil. 2014a; 95: 2239-46.e2. doi: 10.1016/j.apmr.2014.07.400.
Jones ML, Evans N, Tefertiller C, Backus D, Sweatman M, Tansey K, Morrison S. Activity-based therapy for recovery of walking in chronic spinal cord injury: results from a secondary analysis to determine responsiveness to therapy. Arch Phys Med Rehabil. 2014b; 95: 2247-52. doi: 10.1016/j.apmr.2014.07.401.
Kapadia N, Masani K, Catharine Craven B, Giangregorio LM, Hitzig SL, Richards K, Popovic MR. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: Effects on walking competency. J Spinal Cord Med. 2014; 37: 511-24. doi: 10.1179/2045772314Y.0000000263.
Kasch H, Løve US, Jønsson AB, Severinsen KE, Possover M, Elmgreen SB, Forman A. Effect of pelvic laparoscopic implantation of neuroprosthesis in spinal cord injured subjects: a 1-year prospective randomized controlled study. Spinal Cord. 2022; 60: 251-255. doi: 10.1038/s41393-021-00693-7.
Kathe C, Skinnider MA, Hutson TH, Regazzi N, Gautier M, Demesmaeker R, Komi S, Ceto S, James ND, Cho N, Baud L, Galan K, Matson KJE, Rowald A, Kim K, Wang R, Minassian K, Prior JO, Asboth L, Barraud Q, Lacour SP, Levine AJ, Wagner F, Bloch J, Squair JW, Courtine G. The neurons that restore walking after paralysis. Nature. 2022; 611: 540-547. doi: 10.1038/s41586-022-05385-7.
Katoh S, el Masry WS. Motor recovery of patients presenting with motor paralysis and sensory sparing following cervical spinal cord injuries. Paraplegia. 1995 Sep;33(9):506-9. doi: 10.1038/sc.1995.110. PMID: 8524602.
Kay ED, Deutsch A, Wuermser LA. Predicting walking at discharge from inpatient rehabilitation after a traumatic spinal cord injury. Arch Phys Med Rehabil. 2007; 88: 745-50. doi: 10.1016/j.apmr.2007.03.013.
Kawasaki L, Mushahwar VK, Ho C, Dukelow SP, Chan LL, Chan KM. The mechanisms and evidence of effficacy of electrical stimulation for healing of pressure ulcer: a systematic review. Wound Repair Regen. 2014; 22: 161-173.
Kerdraon J, Previnaire JG, Tucker M, Coignard P, Allegre W, Knappen E, Ames A. Evaluation of safety and performance of the self balancing walking system Atalante in patients with complete motor spinal cord injury. Spinal Cord Ser Cases. 2021; 7: 71. doi: 10.1038/s41394-021-00432-3.
Kern H, Rossini K, Carraro U, Mayr W, Vogelauer M, Hoellwarth U, Hofer C. Muscle biopsies show that FES of denervated muscles reverses human muscle degeneration from permanent spinal motoneuron lesion. J Rehabil Res Dev. 2005; 42: 43-53.
Kern H, Carraro U, Adami N, Biral D, Hofer C, Forstner C, Modlin M, Vogelauer M, Pond A, Boncompagni S, Paolini C, Mayr W, Protasi F, Zampieri S. Home-based functional electrical stimulation rescues permanently denervated muscles in paraplegic patients with complete lower motor neuron lesion. Neurorehabilitation and Neural Repair. 2010a; 24: 709-721.
Kern H, Carraro U, Adami N, Hofer C, Loefler S, Vogelauer M, Mayr W, Rupp R, Zampieri S. One year of home-based daily FES in complete lower motor neuron paraplegia: Recovery of tetanic contractility drives the structural improvements of denervated muscle. Neurological Research. 2010b; 32: 5-12.
Khan AS, Livingstone DC, Hurd CL, Duchcherer J, Misiaszek JE, Gorassini MA, Manns PJ, Yang JF. Retraining walking over ground in a powered exoskeleton after spinal cord injury: a prospective cohort study to examine functional gains and neuroplasticity. J Neuroeng Rehabil. 2019b; 16: 145. doi: 10.1186/s12984-019-0585-x.
Khande CK, Verma V, Regmi A, Ifthekar S, Sudhakar PV, Sethy SS, Kandwal P, Sarkar B. Effect on functional outcome of robotic assisted rehabilitation versus conventional rehabilitation in patients with complete spinal cord injury: a prospective comparative study. Spinal Cord. 2024; 62: 228-236. doi: 10.1038/s41393-024-00970-1.
Kim CM, Eng JJ, Whittaker MW. Level walking and ambulatory capacity in persons with incomplete spinal cord injury: relationship with muscle strength. Spinal Cord. 2004a; 42: 156-62. doi: 10.1038/sj.sc.3101569.
Kim CM, Eng JJ, Whittaker MW. Effects of a simple functional electric system and/or a hinged ankle- foot orthosis on walking in persons with incomplete spinal cord injury. Arch Phys Med Rehabil. 2004b; 85: 1718-1723.
Kim HS, Park JH, Lee HS, Lee JY, Jung JW, Park SB, Hyun DJ, Park S, Yoon J, Lim H, Choi YY, Kim MJ. Effects of Wearable Powered Exoskeletal Training on Functional Mobility, Physiological Health and Quality of Life in Non-ambulatory Spinal Cord Injury Patients. J Korean Med Sci. 2021; 36: e80. doi: 10.3346/jkms.2021.36.e80.
Klamruen P, Suttiwong J, Aneksan B, Muangngoen M, Denduang C, Klomjai W. Effects of Anodal Transcranial Direct Current Stimulation With Overground Gait Training on Lower Limb Performance in Individuals With Incomplete Spinal Cord Injury. Arch Phys Med Rehabil. 2024; 105: 857-867. doi: 10.1016/j.apmr.2023.09.025.
Klose KJ, Jacobs PL, Broton JG, Guest RS, Needham-Shropshire BM, Lebwohl N, Nash MS, Green BA. Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 1. Ambulation performance and anthropometric measures. Arch Phys Med Rehabil. 1997; 78: 789-793.
Knikou M. Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury. Exp Brain Res. 2013; 228: 279-96. doi: 10.1007/s00221-013-3560-y.
Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003; 2: 145-56. doi: 10.1016/s1474-4422(03)00321-1.
Kobetic R, Triolo RJ, Marsolais EB. Muscle selection and walking performance of multichannel FES systems for ambulation in paraplegia. IEEE Trans Rehabil Eng. 1997; 5: 23-9. doi: 10.1109/86.559346.
Koda M, Kubota S, Kadone H, Miura K, Funayama T, Takahashi H, Yamazaki M. Robotic rehabilitation therapy using Hybrid Assistive Limb (HAL) for patients with spinal cord lesions: a narrative review. N Am Spine Soc J. 2023; 14: 100209. doi: 10.1016/j.xnsj.2023.100209.
Koskinen SO, Kjaer M, Mohr T, Sorensen FB, Suuronen T, Takala TE. Type IV collagen and its degradation in paralyzed human muscle: effect of functional electrical stimulation. Muscle Nerve. 2000; 23: 580-589.
Kressler J, Nash MS, Burns PA, Field-Fote EC. Metabolic responses to 4 different body weight-supported locomotor training approaches in persons with incomplete spinal cord injury. Arch Phys Med Rehabil. 2013; 94: 1436-1442.
Krogh S, Aagaard P, Jonsson AB, Figlewski K, Kasch H. Effects of repetitive transcranial magnetic stimulation on recovery in lower limb muscle strength and gait function following spinal cord injury: a randomized controlled trial. Spinal Cord. 2022; 60: 135-141. doi: 10.1038/s41393-021-00703-8.
Kubota S, Nakata Y, Eguchi K, Kawamoto H, Kamibayashi K, Sakane M, Sankai Y, Ochiai N. Feasibility of rehabilitation training with a newly developed wearable robot for patients with limited mobility. Arch Phys Med Rehabil. 2013; 94: 1080-7. doi: 10.1016/j.apmr.2012.12.020.
Kuhn D, Leichtfried V, Schobersberger W. Four weeks of functional electrical stimulated cycling after spinal cord injury: a clinical cohort study. Int J Rehabil Res. 2014; 37: 243-50. doi: 10.1097/MRR.0000000000000062.
Kumru H, Benito-Penalva J, Valls-Sole J, Murillo N, Tormos JM, Flores C, Vidal J. Placebo-controlled study of rTMS combined with Lokomat® gait training for treatment in subjects with motor incomplete spinal cord injury. Exp Brain Res. 2016a; 234: 3447-3455. doi: 10.1007/s00221-016-4739-9.
Kumru H, Murillo N, Benito-Penalva J, Tormos JM, Vidal J. Transcranial direct current stimulation is not effective in the motor strength and gait recovery following motor incomplete spinal cord injury during Lokomat(®) gait training. Neurosci Lett. 2016b; 620: 143-7. doi: 10.1016/j.neulet.2016.03.056.
Labruyère R, van Hedel HJA. Strength training versus robot-assisted gait training after incomplete spinal cord injury: a randomized pilot study in patients depending on walking assistance. J Neuroeng Rehabil 2014; 11: 4.
Lacerda de Araújo AV, Neiva JFO, Monteiro CBM, Magalhães FH. Efficacy of Virtual Reality Rehabilitation after Spinal Cord Injury: A Systematic Review. Biomed Res Int. 2019; 2019 :7106951. doi: 10.1155/2019/7106951.
Ladouceur M, Barbeau H. Functional electrical stimulation-assisted walking for persons with incomplete spinal injuries: longitudinal changes in maximal overground walking speed. Scand J Rehabil Med 2000a; 32: 28-36.
Ladouceur M, Barbeau H. Functional electrical stimulation-assisted walking for persons with incomplete spinal injuries: changes in the kinematics and physiological cost of overground walking. Scand J Rehabil Med. 2000b; 32: 72-79.
Lajeunesse V, Vincent C, Routhier F, Careau E, Michaud F. Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil Rehabil Assist Technol. 2016; 11: 535-47. doi: 10.3109/17483107.2015.1080766.
Lakshmipriya T, Gopinath SCB. Brain-spine interface for movement restoration after spinal cord injury. Brain Spine. 2024; 10: 102926. doi: 10.1016/j.bas.2024.102926.
Lam T, Eng JJ, Wolfe DL, Hsieh JT, Whittaker M; the SCIRE Research Team. A systematic review of the efficacy of gait rehabilitation strategies for spinal cord injury. Top Spinal Cord Inj Rehabil. 2007; 13: 32-57. doi: 10.1310/sci1301-32.
Lam T, Noonan VK, Eng JJ, the SCIRE Research Team. A systematic review of functional ambulation outcome measures in spinal cord injury. Spinal Cord. 2008; 46:246-254.
Lam T, Pauhl K, Ferguson A, Malik RN; BKin; Krassioukov A, Eng JJ. Training with robot-applied resistance in people with motor-incomplete spinal cord injury: Pilot study. J Rehabil Res Dev. 2015; 52: 113-29. doi: 10.1682/JRRD.2014.03.0090.
Laubacher M, Aksöz AE, Riener R, Binder-Macleod S, Hunt KJ. Power output and fatigue properties using spatially distributed sequential stimulation in a dynamic knee extension task. Eur J Appl Physiol. 2017; 117: 1787-1798. doi: 10.1007/s00421-017-3675-0.
Laubacher M, Aksoez EA, Brust AK, Baumberger M, Riener R, Binder-Macleod S, Hunt KJ. Stimulation of paralysed quadriceps muscles with sequentially and spatially distributed electrodes during dynamic knee extension. J Neuroeng Rehabil. 2019; 16: 5. doi: 10.1186/s12984-018-0471-y.
Lee MJ, Lee SM. The Effect of Virtual Reality Exercise Program on Sitting Balance Ability of Spinal Cord Injury Patients. Healthcare (Basel). 2021; 9: 183. doi: 10.3390/healthcare9020183.
Leemhuis E, Esposito RM, De Gennaro L, Pazzaglia M. Go Virtual to Get Real: Virtual Reality as a Resource for Spinal Cord Treatment. Int J Environ Res Public Health. 2021; 18: 1819. doi: 10.3390/ijerph18041819.
Lemos N, Fernandes GL, Ribeiro AM, Maia-Lemos PS, Contiero W, Croos-Bezerra V, Tomlison G, Faber J, Oliveira ASB, Girão MJBC. Rehabilitation of People With Chronic Spinal Cord Injury Using a Laparoscopically Implanted Neurostimulator: Impact on Mobility and Urinary, Anorectal, and Sexual Functions. Neuromodulation. 2023; 26: 233-245. doi: 10.1016/j.neurom.2022.01.010.
Levin MF, Weiss PL, Keshner EA. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys Ther. 2015; 95:415-25. doi: 10.2522/ptj.20130579.
Lewis D. Electrical stimulation helps paralysed people walk again – and now we know why. Nature. 2022; 611: 438. doi: 10.1038/d41586-022-03605-8.
Li F, Wei C, Huo S, Liu X, Du J. Noninvasive Brain Stimulation for Motor Dysfunction After Incomplete Spinal Cord Injury: A Systematic Review and Meta-analysis. Am J Phys Med Rehabil. 2024; 103: 53-61. doi: 10.1097/PHM.0000000000002311.
Liberson WT, Holmquest HJ, Scot D, Dow M. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961; 42: 101-5.
Lima MC, Fregni F. Motor cortex stimulation for chronic pain: systematic review and meta-analysis of the literature. Neurology. 2008; 70: 2329-37. doi: 10.1212/01.wnl.0000314649.38527.93.
Liu W, Chen J. The efficacy of exoskeleton robotic training on ambulation recovery in patients with spinal cord injury: A meta-analysis. J Spinal Cord Med. 2024; 47: 840-849. doi: 10.1080/10790268.2023.2214482.
Liu CW, Chen SC, Chen CH, Chen TW, Chen JJ, Lin CS, Huang MH. Effects of functional electrical stimulation on peak torque and body composition in patients with incomplete spinal cord injury. Kaohsiung J Med Sci. 2007; 23: 232-40. doi: 10.1016/s1607-551x(09)70403-6.
Liu Y, Xie JX, Niu F, Xu Z, Tan P, Shen C, Gao H, Liu S, Ma Z, So KF, Wu W, Chen C, Gao S, Xu XM, Zhu H. Surgical intervention combined with weight-bearing walking training improves neurological recoveries in 320 patients with clinically complete spinal cord injury: a prospective self-controlled study. Neural Regen Res. 2021; 16: 820-829. doi: 10.4103/1673-5374.297080.
Lorach H, Galvez A, Spagnolo V, Martel F, Karakas S, Intering N, Vat M, Faivre O, Harte C, Komi S, Ravier J, Collin T, Coquoz L, Sakr I, Baaklini E, Hernandez-Charpak SD, Dumont G, Buschman R, Buse N, Denison T, van Nes I, Asboth L, Watrin A, Struber L, Sauter-Starace F, Langar L, Auboiroux V, Carda S, Chabardes S, Aksenova T, Demesmaeker R, Charvet G, Bloch J, Courtine G. Walking naturally after spinal cord injury using a brain-spine interface. Nature. 2023; 618: 126-133. doi: 10.1038/s41586-023-06094-5.
Lorenz DJ, Datta S, Harkema SJ. Longitudinal patterns of functional recovery in patients with incomplete spinal cord injury receiving activity-based rehabilitation. Arch Phys Med Rehabil. 2012; 93: 1541-52. doi: 10.1016/j.apmr.2012.01.027.
Lotter JK, Henderson CE, Plawecki A, Holthus ME, Lucas EH, Ardestani MM, Schmit BD, Hornby TG. Task-Specific Versus Impairment-Based Training on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study. Neurorehabil Neural Repair. 2020; 34: 627-639. doi: 10.1177/1545968320927384.
Louie DR, Eng JJ, Lam T; Spinal Cord Injury Research Evidence (SCIRE) Research Team. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. J Neuroeng Rehabil. 2015; 12: 82. doi: 10.1186/s12984-015-0074-9.
Lucareli PR, Lima MO, Lima FP, de Almeida JG, Brech GC, D’Andrea Greve JM. Gait analysis following treadmill training with body weight support versus conventional physical therapy: A prospective randomized controlled single blind study. Spinal Cord. 2011; 49: 1001-1007.
Malik RN, Eginyan G, Lynn AK, Lam T. Improvements in skilled walking associated with kinematic adaptations in people with spinal cord injury. J Neuroeng Rehabil. 2019; 16: 107. doi: 10.1186/s12984-019-0575-z.
Manaf H, Hamzaid NA, Hasnan N, Yiwei C, Mohafez H, Hisham H, Davis G. High-intensity interval training with functional electrical stimulation cycling for incomplete spinal cord injury patients: A pilot feasibility study. Artif Organs. 2024; 48: 1449-1457. doi: 10.1111/aor.14831.
Marsolais EB, Kobetic R. Implantation techniques and experience with percutaneous intramuscular electrodes in the lower extremities. J Rehabil Res Dev. 1986; 23: 1-8.
Martin JL, Barbanoj MJ, Schlaepfer TE, Thompson E, Pérez V, Kulisevsky J. Repetitive transcranial magnetic stimulation for the treatment of depression. Systematic review and meta-analysis. Br J Psychiatry. 2003; 182: 480-91. doi: 10.1192/bjp.182.6.480.
Mat Rosly M, Mat Rosly H, Davis Oam GM, Husain R, Hasnan N. Exergaming for individuals with neurological disability: a systematic review. Disabil Rehabil. 2017; 39: 727-735. doi: 10.3109/09638288.2016.1161086.
Maynard, F. M., Reynolds, G. G., Fountain, S., Wilmot, C., & Hamilton, R. (1979). Neurological prognosis after traumatic quadriplegia: Three-year experience of California Regional Spinal Cord Injury Care System. Journal of Neurosurgery, 50(5), 611-616. https://doi.org/10.3171/jns.1979.50.5.0611
McHugh C, Taylor C, Mockler D, Fleming N. Epidural spinal cord stimulation for motor recovery in spinal cord injury: A systematic review. NeuroRehabilitation. 2021; 49: 1-22. doi: 10.3233/NRE-210093.
McIntosh K, Charbonneau R, Bensaada Y, Bhatiya U, Ho C. The Safety and Feasibility of Exoskeletal-Assisted Walking in Acute Rehabilitation After Spinal Cord Injury. Arch Phys Med Rehabil. 2020; 101: 113-120. doi: 10.1016/j.apmr.2019.09.005.
McMillan J. The role of water in rehabilitation. Fysioterapeuten. 1978; 45: 87–90.
Megía García A, Serrano-Muñoz D, Taylor J, Avendaño-Coy J, Gómez-Soriano J. Transcutaneous Spinal Cord Stimulation and Motor Rehabilitation in Spinal Cord Injury: A Systematic Review. Neurorehabil Neural Repair. 2020; 34: 3-12. doi: 10.1177/1545968319893298.
Mehrholz J, Kugler J, Pohl M. Locomotor training for walking after spinal cord injury. Spine (Phila Pa 1976). 2008; 33: E768-77.
Mehrholz J, Kugler J, Pohl M. Locomotor training for walking after spinal cord injury. Cochrane Database of Systematic Reviews. 2012, Issue 11. Art. No.: CD006676. DOI: 10.1002/14651858.CD006676.pub3.
Mehrholz J, Pohl M. Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices. J Rehabil Med. 2012; 44: 193-9. doi: 10.2340/16501977-0943.
Mehrholz J, Harvey LA, Thomas S, Elsner B. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord. 2017; 55: 722-729. doi: 10.1038/sc.2017.31. Epub 2017 Apr 11. Erratum in: Spinal Cord. 2018; 56: 412. doi: 10.1038/s41393-017-0059-6.
Meijneke C, van Oort G, Sluiter V, van Asseldonk E, Tagliamonte NL, Tamburella F, Pisotta I, Masciullo M, Arquilla M, Molinari M, Wu AR, Dzeladini F, Ijspeert AJ, van der Kooij H. Symbitron Exoskeleton: Design, Control, and Evaluation of a Modular Exoskeleton for Incomplete and Complete Spinal Cord Injured Individuals. IEEE Trans Neural Syst Rehabil Eng. 2021; 29: 330-339. doi: 10.1109/TNSRE.2021.3049960.
Mıdık M, Paker N, Buğdaycı D, Mıdık AC. Effects of robot-assisted gait training on lower extremity strength, functional independence, and walking function in men with incomplete traumatic spinal cord injury. Turk J Phys Med Rehabil. 2020; 66: 54-59. doi: 10.5606/tftrd.2020.3316.
Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices (Auckl). 2016; 9: 455-66. doi: 10.2147/MDER.S103102.
Mollà-Casanova S, Muñoz-Gómez E, Aguilar-Rodríguez M, Inglés M, Sempere-Rubio N, Moreno-Segura N, Serra-Añó P. Effectiveness of virtual-walking intervention combined with exercise on improving pain and function in incomplete spinal cord injury: a feasibility study. Spinal Cord Ser Cases. 2024; 10: 64. doi: 10.1038/s41394-024-00675-w.
Molteni F, Gasperini G, Cannaviello G, Guanziroli E. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review. PM R. 2018 Sep;10(9 Suppl 2):S174-S188. doi: 10.1016/j.pmrj.2018.06.005. PMID: 30269804.
Morawietz C, Moffat F. Effects of locomotor training after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil. 2013; 94: 2297-2308.
Morgan DW, Stevens SL. Use of water- and land-based gait training to improve walking capacity in adults with complete spinal cord injury: A pilot study. J Spinal Cord Med. 2024; 47: 404-411. doi: 10.1080/10790268.2022.2088507.
Moriarty B, Jacob T, Sadlowski M, Fowler M, Rowan C, Chavarria J, Avramis I, Rizkalla J. The use of exoskeleton robotic training on lower extremity function in spinal cord injuries: A systematic review. J Orthop. 2024; 65: 1-7. doi: 10.1016/j.jor.2024.10.036.
Musselman KE, Fouad K, Misiaszek JE, Yang JF. Training of walking skills overground and on the treadmill: case series on individuals with incomplete spinal cord injury. Phys Ther. 2009; 89: 601-11. doi: 10.2522/ptj.20080257.
Musselman KE, Verrier MC, Flett H, Nadeau S, Yang JF, Farahani F, Alavinia SM, Omidvar M, Wiest MJ, Craven BC. Development of Walking indicators to advance the quality of spinal cord injury rehabilitation: SCI-High Project. J Spinal Cord Med. 2019; 42: 119-129. doi: 10.1080/10790268.2019.1647385.
Nam KY, Kim HJ, Kwon BS, Park J-W, Lee JH, Yoo A. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroeng Rehabil. 2017; 14:24. doi: 10.1186/s12984-017-0232-3
Naro A, Billeri L, Balletta T, Lauria P, Onesta MP, Calabrò RS. Finding the Way to Improve Motor Recovery of Patients with Spinal Cord Lesions: A Case-Control Pilot Study on a Novel Neuromodulation Approach. Brain Sci. 2022; 12: 119. doi: 10.3390/brainsci12010119.
Navarrete-Opazo A, Alcayaga J, Sepúlveda O, Rojas E, Astudillo C. Repetitive Intermittent Hypoxia and Locomotor Training Enhances Walking Function in Incomplete Spinal Cord Injury Subjects: A Randomized, Triple-Blind, Placebo-Controlled Clinical Trial. J Neurotrauma. 2017a; 34: 1803-1812. doi: 10.1089/neu.2016.4478.
Navarrete-Opazo A, Alcayaga JJ, Sepúlveda O, Varas G. Intermittent Hypoxia and Locomotor Training Enhances Dynamic but Not Standing Balance in Patients With Incomplete Spinal Cord Injury. Arch Phys Med Rehabil. 2017b; 98: 415-424. doi: 10.1016/j.apmr.2016.09.114.
Nijhawan M, Kataria C. Effect of Transcranial Direct Current Stimulation on Lower Extremity Muscle Strength, Quality of Life, and Functional Recovery in Individuals With Incomplete Spinal Cord Injury: A Randomized Controlled Study. Cureus. 2024; 16: e51989. doi: 10.7759/cureus.51989.
Nithiatthawanon T, Amatachaya P, Thaweewannakij T, Manimmanakorn N, Sooknuan T, Amatachaya S. Immediate effects of lower limb loading exercise during stepping with and without augmented loading feedback on mobility of ambulatory individuals with spinal cord injury: a single-blinded, randomized, cross-over trial. Spinal Cord. 2020; 58: 1301-1309. doi: 10.1038/s41393-020-0498-3.
Niu X, Varoqui D, Kindig M, Mirbagheri MM. Prediction of gait recovery in spinal cord injured individuals trained with robotic gait orthosis. J Neuroeng Rehabil. 2014; 11: 42. doi: 10.1186/1743-0003-11-42.
Nogueira F, Shirahige L, Brito R, Lima H, Victor J, Sanchez MP, Ilha J, Monte-Silva K. Repetitive Transcranial Magnetic Stimulation with Body Weight-supported Treadmill Training Enhances Independent Walking of Individuals with Chronic Incomplete Spinal Cord Injury: A Pilot Randomized Clinical Trial. Brain Topogr. 2024; 37: 1232-1241. doi: 10.1007/s10548-024-01072-0.
Nooijen CFJ, Hoeve NT, Field-Fote EC. Gait quality is improved by locomotors training in individual with SCI regardless of training approach. J of NeuroEng and Rehab. 2009; 6: 36-47.
O’Sullivan SB, Schmitz TJ. Physical rehabilitation: assessment and treatment. Philadelphia: F. A. Davis Company 1994.
Oh DW, Park HJ. One-year follow-up of the effects of community-based ambulation training for ambulatory patients with incomplete spinal cord injury: a case series. NeuroRehabilitation. 2013; 32: 425-32. doi: 10.3233/NRE-130864.
Oh DW, Park HJ. One-year follow-up of the effects of community-based ambulation training for ambulatory patients with incomplete spinal cord injury: a case series. NeuroRehabilitation. 2013; 32: 425-32. doi: 10.3233/NRE-130864.
Okawara H, Sawada T, Matsubayashi K, Sugai K, Tsuji O, Nagoshi N, Matsumoto M, Nakamura M. Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: a clinical study. Spinal Cord. 2020; 58: 520-527. doi: 10.1038/s41393-019-0403-0.
Oleson JD, Park YL, Nowatzki TM, Tollefson JJ. Node-injury scale to evaluate root injury by corn rootworms (Coleoptera: Chrysomelidae). J Econ Entomol. 2005 Feb;98(1):1-8. doi: 10.1093/jee/98.1.1. PMID: 15765660.
Onate D, Hogan C, Fitzgerald K, White KT, Tansey K. Recommendations for clinical decision-making when offering exoskeletons for community use in individuals with spinal cord injury. Front Rehabil Sci. 2024; 5: 1428708. doi: 10.3389/fresc.2024.1428708.
Panisset MG, Galea MP, El-Ansary D. Does early exercise attenuate muscle atrophy or bone los after spinal cord injury? Spinal Cord. 2016; 54: 84-92.
Park JH, Kim HS, Jang SH, Hyun DJ, Park SI, Yoon J, Lim H, Kim MJ. Cardiorespiratory Responses to 10 Weeks of Exoskeleton-Assisted Overground Walking Training in Chronic Nonambulatory Patients with Spinal Cord Injury. Sensors (Basel). 2021; 21: 5022. doi: 10.3390/s21155022.
Patathong T, Klaewkasikum K, Woratanarat P, Rattanasiri S, Anothaisintawee T, Woratanarat T, Thakkinstian A. The efficacy of gait rehabilitations for the treatment of incomplete spinal cord injury: a systematic review and network meta-analysis. J Orthop Surg Res. 2023; 18: 60. doi: 10.1186/s13018-022-03459-w.
Perot PL Jr, Vera CL. Scalp-recorded somatosensory evoked potentials to stimulation of nerves in the lower extremities and evaluation of patients with spinal cord trauma. Ann N Y Acad Sci. 1982;388:359-68. doi: 10.1111/j.1749-6632.1982.tb50802.x. PMID: 6953876.
Perrouin-Verbe M-A, Van Kerrebroeck PEV. The future of neuromodulation for functional pelvic problems. Continence. 2024; 11: 101694
Petrofsky JS. The use of electromyogram biofeedback to reduce Trendelenburg gait. Eur J Appl Physiol. 2001; 85: 491-495.
Phan P, Budhram B, Zhang Q, Rivers CS, Noonan VK, Plashkes T, Wai EK, Paquet J, Roffey DM, Tsai E, Fallah N. Highlighting discrepancies in walking prediction accuracy for patients with traumatic spinal cord injury: an evaluation of validated prediction models using a Canadian Multicenter Spinal Cord Injury Registry. Spine J. 2019; 19: 703-710. doi: 10.1016/j.spinee.2018.08.016.
Piira A, Lannem AM, Sørensen M, Glott T, Knutsen R, Jørgensen L, Gjesdal K, Hjeltnes N, Knutsen SF. Manually assisted body-weight supported locomotor training does not re-establish walking in non-walking subjects with chronic incomplete spinal cord injury: A randomized clinical trial. J Rehabil Med. 2019a; 51: 113-119. doi: 10.2340/16501977-2508.
Piira A, Lannem AM, Sørensen M, Glott T, Knutsen R, Jørgensen L, Gjesdal K, Hjeltnes N, Knutsen SF. Robot-assisted locomotor training did not improve walking function in patients with chronic incomplete spinal cord injury: A randomized clinical trial. J Rehabil Med. 2019b; 51: 385-389. doi: 10.2340/16501977-2547.
Piira A, Lannem AM, Gjesdal K, Knutsen R, Jørgensen L, Glott T, Hjeltnes N, Knutsen SF, Sørensen M. Quality of life and psychological outcomes of body-weight supported locomotor training in spinal cord injured persons with long-standing incomplete lesions. Spinal Cord. 2020; 58: 560-569. doi: 10.1038/s41393-019-0401-2.
Possover M, Schurch B, Henle KP. New strategies of pelvic nerves stimulation for recovery of pelvic visceral functions and locomotion in paraplegics. Neurourology and Urodynamics. 2010; 29: 1433-1438.
Possover M. Recovery of sensory and supraspinal control of leg movement in people with chronic paraplegia: a case series. Arch Phys Med Rehabil. 2014; 95: 610-4. doi: 10.1016/j.apmr.2013.10.030.
Possover M, Forman A. Recovery of supraspinal control of leg movement in a chronic complete flaccid paraplegic man after continuous low-frequency pelvic nerve stimulation and FES-assisted training. Spinal Cord Ser Cases. 2017; 3: 16034. doi: 10.1038/scsandc.2016.34.
Possover M. Ten-Year Experience With Continuous Low-Frequency Pelvic Somatic Nerves Stimulation for Recovery of Voluntary Walking in People With Chronic Spinal Cord Injury: A Prospective Case Series of 29 Consecutive Patients. Arch Phys Med Rehabil. 2021; 102: 50-57. doi: 10.1016/j.apmr.2020.09.382.
Postans NJ, Hasler JP, Granat MH, Maxwell DJ. Functional electric stimulation to augment partial weight-bearing supported treadmill training for patients with acute incomplete spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2004; 85: 604-610.
Postol N, Spratt NJ, Bivard A, Marquez J. Physiotherapy using a free-standing robotic exoskeleton for patients with spinal cord injury: a feasibility study. J Neuroeng Rehabil. 2021; 18: 180. doi: 10.1186/s12984-021-00967-4.
Pramodhyakul N, Amatachaya P, Sooknuan T, Arayawichanon P, Amatachaya S. Visuotemporal cues clinically improved walking ability of ambulatory patients with spinal cord injury within 5 days. J Spinal Cord Med. 2016; 39: 405-11. doi: 10.1179/2045772315Y.0000000058.
Rademeyer HJ, Gauthier C, Masani K, Pakosh M, Musselman KE. The effects of epidural stimulation on individuals living with spinal cord injury or disease: a scoping review. Physical Therapy Reviews. 2021; 26: 344-369. https://doi.org/10.1080/10833196.2021.1962051
Raithatha R, Carrico C, Powell ES, Westgate PM, Chelette Ii KC, Lee K, Dunsmore L, Salles S, Sawaki L. Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: A randomized pilot study. NeuroRehabilitation. 2016; 38: 15-25. doi: 10.3233/NRE-151291.
Ralston KE, Harvey L, Batty J, Bonsan LB, Ben M, Cusmiani R, Bennett J. Functional electrical stimulation cycling has no clear effect on urine output, lower limb swelling, and spasticity in people with spinal cord injury: a randomized cross-over trial. J Physiother. 2013; 59: 237-243.
Reck TA, Landmann G. Successful spinal cord stimulation for neuropathic below-level spinal cord injury pain following complete paraplegia: a case report. Spinal Cord Ser Cases. 2017; 3:17049.
Reichenfelser W, Hackl H, Hufgard J, Kastner J, Gstaltner K, Gföhler M. Monitoring of spasticity and functional ability in individuals with incomplete spinal cord injury with a functional electrical stimulation cycling system. J Rehabil Med. 2012; 44: 444-449.
Reilly CA, Greeley AB, Jevsevar DS, Gitajn IL. Virtual reality-based physical therapy for patients with lower extremity injuries: feasibility and acceptability. OTA Int. 2021; 4: e132. doi: 10.1097/OI9.0000000000000132.
Rejc E, Angeli C, Harkema S. Effects of Lumbosacral Spinal Cord Epidural Stimulation for Standing after Chronic Complete Paralysis in Humans. PLoS One. 2015; 10: e0133998.
Rejc E, Angeli CA, Bryant N, Harkema SJ. Effects of Stand and Step Training with Epidural Stimulation on Motor Function for Standing in Chronic Complete Paraplegics. J Neurotrauma. 2017; 34: 1787-1802. doi: 10.1089/neu.2016.4516.
Rodionov A, Savolainen S, Kirveskari E, Mäkelä JP, Shulga A. Effects of Long-Term Paired Associative Stimulation on Strength of Leg Muscles and Walking in Chronic Tetraplegia: A Proof-of-Concept Pilot Study. Front Neurol. 2020; 11: 397. doi: 10.3389/fneur.2020.00397.
Rodríguez-Fernández A, Lobo-Prat J, Font-Llagunes JM. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J Neuroeng Rehabil. 2021; 18: 22. doi: 10.1186/s12984-021-00815-5.
Rodríguez-Fernández A, Lobo-Prat J, Tarragó R, Chaverri D, Iglesias X, Guirao-Cano L, Font-Llagunes JM. Comparing walking with knee-ankle-foot orthoses and a knee-powered exoskeleton after spinal cord injury: a randomized, crossover clinical trial. Sci Rep. 2022; 12: 19150. doi: 10.1038/s41598-022-23556-4.
Rodriguez-Tapia G, Doumas I, Lejeune T, Previnaire JG. Wearable powered exoskeletons for gait training in tetraplegia: a systematic review on feasibility, safety and potential health benefits. Acta Neurol Belg. 2022; 122: 1149-1162. doi: 10.1007/s13760-022-02011-1
Rosley N, Hasnan N, Hamzaid NA, Davis GM, Manaf H. Effects of a combined progressive resistance training and functional electrical stimulation-evoked cycling exercise on lower limb muscle strength of individuals with incomplete spinal cord injury: A randomized controlled study. Turk J Phys Med Rehabil. 2022; 69: 23-30. doi: 10.5606/tftrd.2023.9418.
Round JM, Barr FM, Moffat B, Jones DA. Fibre areas and histochemical fibre types in the quadriceps muscle of paraplegic participants. J Neurol Sci 1993; 116: 207-211.
Rowald A, Komi S, Demesmaeker R, Baaklini E, Hernandez-Charpak SD, Paoles E, Montanaro H, Cassara A, Becce F, Lloyd B, Newton T, Ravier J, Kinany N, D’Ercole M, Paley A, Hankov N, Varescon C, McCracken L, Vat M, Caban M, Watrin A, Jacquet C, Bole-Feysot L, Harte C, Lorach H, Galvez A, Tschopp M, Herrmann N, Wacker M, Geernaert L, Fodor I, Radevich V, Van Den Keybus K, Eberle G, Pralong E, Roulet M, Ledoux JB, Fornari E, Mandija S, Mattera L, Martuzzi R, Nazarian B, Benkler S, Callegari S, Greiner N, Fuhrer B, Froeling M, Buse N, Denison T, Buschman R, Wende C, Ganty D, Bakker J, Delattre V, Lambert H, Minassian K, van den Berg CAT, Kavounoudias A, Micera S, Van De Ville D, Barraud Q, Kurt E, Kuster N, Neufeld E, Capogrosso M, Asboth L, Wagner FB, Bloch J, Courtine G. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med. 2022; 28: 260-271. doi: 10.1038/s41591-021-01663-5.
Ryan TE, Briendine JT, Backus D, McCully KK. Electrically induced resistance training in individuals with motor complete spinal cord injury. Arch Phys Med Rehabil. 2013; 94: 2166-73.
Sadeghi M, Ghasemi G, Karimi M. Effect of 12-Week Rebound Therapy Exercise on Static Stability of Patients With Spinal Cord Injury. J Sport Rehabil. 2019; 28: 464-467. doi: 10.1123/jsr.2017-0303.
Sawada T, Okawara H, Matsubayashi K, Sugai K, Kawakami M, Tashiro S, Nori S, Tsuji O, Nagoshi N, Matsumoto M, Nakamura M. Influence of body weight-supported treadmill training with voluntary-driven exoskeleton on the quality of life of persons with chronic spinal cord injury: a pilot study. Int J Rehabil Res. 2021; 44: 343-349. doi: 10.1097/MRR.0000000000000496.
Sayenko DG, Alekhina MI, Masani K, Vette AH, Obata H, Popovic MR, Nakazawa K. Positive effect of balance training with visual feedback on standing balance abilities in people with incomplete spinal cord injury. Spinal Cord. 2010; 48: 886-93. doi: 10.1038/sc.2010.41.
Schröder J, Truijen S, Van Criekinge T, Saeys W. Feasibility and effectiveness of repetitive gait training early after stroke: A systematic review and meta-analysis. J Rehabil Med. 2019; 51: 78-88. doi: 10.2340/16501977-2505.
Schwartz MS. A New Improved Universally Accepted Official Definition of Biofeedback: Where Did It Come From? Why? Who Did It? Who Is It for? What’s Next? Biofeedback. 2010; 38: 88-90. doi: 10.5298/1081-5937-38.3.88 2010:
Schwartz I, Sajina A, Neeb M, Fisher I, Katz-Luerer M, Meiner Z. Locomotor training using a robotic device in patients with subacute spinal cord injury. Spinal Cord. 2011; 49: 1062-7. doi: 10.1038/sc.2011.59.
Scivoletto G, Di Donna V. Prediction of walking recovery after spinal cord injury. Brain Res Bull. 2009; 78: 43-51. doi: 10.1016/j.brainresbull.2008.06.002.
Scivoletto G, Morganti B, Ditunno P, Ditunno JF, Molinari M. Effects on age on spinal cord lesion patients’ rehabilitation. Spinal Cord. 2003 Aug;41(8):457-64. doi: 10.1038/sj.sc.3101489. PMID: 12883544.
Scivoletto G, Tamburella F, Laurenza L, Torre M, Molinari M. Who is going to walk? A review of factors influencing walking recovery after spinal cord injury. Front Hum Neurosci. 2014; 8: 141.
Sczesny-Kaiser M, Höffken O, Aach M, Cruciger O, Grasmücke D, Meindl R, Schildhauer TA, Schwenkreis P, Tegenthoff M. HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil. 2015; 12: 68.
Senthilvelkumar T, Magimairaj H, Fletcher J, Tharion G, George J. Comparison of body weight-supported treadmill training versus body weight-supported overground training in people with incomplete tetraplegia: a pilot randomized trial. Clinical Rehabilitation. 2015; 29: 42–49.
Senthilvelkumar T, Chalageri PH, Durairaj SK, Venkatraman M, Chandy BR, Rebekah G, Thomas R, George J. Orthotic walking outcome of persons with motor complete low thoracic spinal cord injury-a retrospective study. Spinal Cord. 2023; 61: 224-230. doi: 10.1038/s41393-023-00875-5.
Seyyedzadeh, Hanieh MSc; Arazpour, Mokhtar PhD; Saeedi, Hassan PhD; Mousavi, Mohammad Ebrahim MD; Golchin, Navid MD. Comparison of the Efficacy of Two Different Medial Linkage Mechanisms in Knee-Ankle-Foot Orthoses on Walking Ability in Subjects with Spinal Cord Injury. Journal of Prosthetics and Orthotics. 2021: 33: 311-314. DOI: 10.1097/JPO.0000000000000364
Shackleton C, Evans R, Shamley D, West S, Albertus Y. Effectiveness of over-ground robotic locomotor training in improving walking performance, cardiovascular demands, secondary complications and user-satisfaction in individuals with spinal cord injuries: A systematic review. J Rehabil Med. 2019; 51: 723-733. doi: 10.2340/16501977-2601.
Shackleton C, Evans R, West S, Bantjes J, Swartz L, Derman W, Albertus Y. Robotic locomotor training in a low-resource setting: a randomized pilot and feasibility trial. Disabil Rehabil. 2024; 46: 3363-3372. doi: 10.1080/09638288.2023.2245751.
Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg. 1967; 46: 489-91
Shi C, Chen Y, Ye L, Feng J, Dong G, Lu S. Transcutaneous spinal cord stimulation on motor function in patients with spinal cord injury: A meta-analysis. NeuroRehabilitation. 2024; 54: 563-573. doi: 10.3233/NRE-240057.
Shields RK, Dudley-Javoroski S. Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training. J Neurophysiol. 2006; 95: 2380-2390.
Shin JC, Kim JY, Park HK, Kim NY. Effect of Robotic-Assisted Gait Training in Patients With Incomplete Spinal Cord Injury. Ann Rehabil Med. 2014; 38:719-725. Doi: 10.5535/arm.2014.38.6.719
Shin JC, Jeon HR, Kim D, Cho SI, Min WK, Lee JS, Oh DS, Yoo J. Effects on the Motor Function, Proprioception, Balance, and Gait Ability of the End-Effector Robot-Assisted Gait Training for Spinal Cord Injury Patients. Brain Sci. 2021; 11: 1281. doi: 10.3390/brainsci11101281.
Shin JC, Jeon HR, Kim D, Min WK, Lee JS, Cho SI, Oh DS, Yoo J. Effects of end-effector robot-assisted gait training on gait ability, muscle strength, and balance in patients with spinal cord injury. NeuroRehabilitation. 2023; 53: 335-346. doi: 10.3233/NRE-230085.
Simis M, Uygur-Kucukseymen E, Pacheco-Barrios K, Battistella LR, Fregni F. Beta-band oscillations as a biomarker of gait recovery in spinal cord injury patients: A quantitative electroencephalography analysis. Clin Neurophysiol. 2020; 131: 1806-1814. doi: 10.1016/j.clinph.2020.04.166.
Simis M, Fregni F, Battistella LR. Transcranial direct current stimulation combined with robotic training in incomplete spinal cord injury: a randomized, sham-controlled clinical trial. Spinal Cord Ser Cases. 2021; 7: 87. doi: 10.1038/s41394-021-00448-9.
Şipal MS, Yıldırım S, Akıncı MG, Dincer S, Akyüz M. Enhancing balance and mobility in incomplete spinal cord injury with an overground gait trainer. Spinal Cord Ser Cases. 2024; 10: 52. doi: 10.1038/s41394-024-00668-9.
Skiba GH, Andrade SF, Rodacki AF. Effects of functional electro-stimulation combined with blood flow restriction in affected muscles by spinal cord injury. Neurol Sci. 2022; 43: 603-613. doi: 10.1007/s10072-021-05307-x.
Sköld C, Lönn L, Harms-Ringdahl K, Hultling C, Levi R, Nash M, Seiger A. Effects of functional electrical stimulation training for six months on body composition and spasticity in motor complete tetraplegic spinal cord-injured individuals. J Rehabil Med. 2002; 34: 25-32. doi: 10.1080/165019702317242677.
Solomonow M, Aguilar E, Reisin E, Baratta RV, Best R, Coetzee T, D’Ambrosia R. Reciprocating gait orthosis powered with electrical muscle stimulation (RGO II). Part I: Performance evaluation of 70 paraplegic patients. Orthopedics. 1997; 20: 315-24. doi: 10.3928/0147-7447-19970401-08.
Somers MF. Spinal cord injury: functional rehabilitation. ed. Norwalk, CT: Appleton & Lange, 1992.
Soopramanien A, Pain H, Stainthorpe A, Menarini M, Ventura M. Using telemedicine to provide post-discharge support for patients with spinal cord injuries. J Telemed Telecare. 2005; 11: 68-70. doi: 10.1258/1357633054461633.
Sorani M. A Guide to Emerging Spinal Cord Stimulation Devices for Spinal Cord Injury. Accessed May 14, 2025. https://medium.com/neurotechx/a-guide-to-emerging-spinal-cord-stimulation-devices-for-spinal-cord-injury-abab3442c929
Stein RB, Bélanger M, Wheeler G, Wieler M, Popović DB, Prochazka A, Davis LA. Electrical systems for improving locomotion after incomplete spinal cord injury: an assessment. Arch Phys Med Rehabil. 1993; 74: 954-9.
Stevens SL. A walk to a better tomorrow: improving functional mobility in adults with incomplete spinal cord injury. Dissertation submitted to the Faculty of the Graduate School at Middle Tennessee State University. 2010.
Stevens SL, Caputo JL, Fuller DK, Morgan DW. Effects of underwater treadmill training on leg strength, balance, and walking performance in adults with incomplete spinal cord injury. J Spinal Cord Med. 2015; 38: 91-101. doi: 10.1179/2045772314Y.0000000217.
Stewart BG, Tarnopolsky MA, Hicks AL, McCartney N, Mahoney DJ, Staron RS, Phillips SM. Treadmill training-induced adaptations in muscle phenotype in persons with incomplete spinal cord injury. Muscle Nerve. 2004; 30: 61-8. doi: 10.1002/mus.20048.
Stone WJ, Stevens SL, Fuller DK, Caputo JL. Strength and Step Activity After Eccentric Resistance Training in Those With Incomplete Spinal Cord Injuries. Top Spinal Cord Inj Rehabil. 2018; 24: 343-352. doi: 10.1310/sci17-00052.
Stone WJ, Stevens SL, Fuller DK, Caputo JL. Ambulation and physical function after eccentric resistance training in adults with incomplete spinal cord injury: A feasibility study. J Spinal Cord Med. 2019; 42: 526-533. doi: 10.1080/10790268.2017.1417804.
Stroke Engine. 2025. Glossary of Terms. Available from http://www.medicine.mcgill.ca/strokengine/definitions-en.html
Swank C, Trammell M, Bennett M, Ochoa C, Callender L, Sikka S, Driver S. The utilization of an overground robotic exoskeleton for gait training during inpatient rehabilitation-single-center retrospective findings. Int J Rehabil Res. 2020; 43: 206-213. doi: 10.1097/MRR.0000000000000409.
Swinnen E, Duerinck S, Baeyens JP, Meeusen R, Kerckhofs E. Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J Rehabil Med. 2010; 42: 520-6.
Tamburella F, Scivoletto G, Molinari M. Balance training improves static stability and gait in chronic incomplete spinal cord injury subjects: a pilot study. Eur J Phys Rehabil Med. 2013; 49:353-64.
Tamburella F, Tagliamonte NL, Pisotta I, Masciullo M, Arquilla M. van Asseldonk EHF, et al. Neuromuscular Controller Embedded in a Powered Ankle Exoskeleton: Effects on Gait, Clinical Features and Subjective Perspective of Incomplete Spinal Cord Injured Subjects. IEEE Trans Neural Syst Rehabil Eng. 2020a; 28: 1157-1167. doi: 10.1109/TNSRE.2020.2984790.
Tamburella F, Tagliamonte NL, Masciullo M, Pisotta I, Arquilla M, van Asseldonk EHF, et al. Gait training with Achilles ankle exoskeleton in chronic incomplete spinal cord injury subjects. J Biol Regul Homeost Agents. 2020b; 34: 147-164.
Tamburella F, Lorusso M, Tramontano M, Fadlun S, Masciullo M, Scivoletto G. Overground robotic training effects on walking and secondary health conditions in individuals with spinal cord injury: systematic review. J Neuroeng Rehabil. 2022; 19: 27. doi: 10.1186/s12984-022-01003-9.
Tan AQ, Barth S, Trumbower RD. Acute intermittent hypoxia as a potential adjuvant to improve walking following spinal cord injury: evidence, challenges, and future directions. Curr Phys Med Rehabil Rep. 2020; 8: 188-198. doi: 10.1007/s40141-020-00270-8.
Tan AQ, Sohn WJ, Naidu A, Trumbower RD. Daily acute intermittent hypoxia combined with walking practice enhances walking performance but not intralimb motor coordination in persons with chronic incomplete spinal cord injury. Exp Neurol. 2021; 340: 113669. doi: 10.1016/j.expneurol.2021.113669.
Tang Q, Huang Q, Hu C. Research on Design Theory and Compliant Control for Underactuated Lower-extremity Rehabilitation Robotic Systems code: (51175368); 2012.01-2015.12. J Phys Ther Sci. 2014; 26: 1597-9. doi: 10.1589/jpts.26.1597.
Tarnacka B, Korczyński B, Frasuńska J. Impact of Robotic-Assisted Gait Training in Subacute Spinal Cord Injury Patients on Outcome Measure. Diagnostics. 2023; 13: 1966. https://doi.org/10.3390/diagnostics13111966
Tefertiller C, Hays K, Jones J, Jayaraman A, Hartigan C, Bushnik T, Forrest GF. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury. Top Spinal Cord Inj Rehabil. 2018; 24: 78-85. doi: 10.1310/sci17-00014.
Tester NJ, Howland DR, Day KV, Suter SP, Cantrell A, Behrman AL. Device use, locomotor training and the presence of arm swing during treadmill walking after spinal cord injury. Spinal Cord. 2011; 49: 451-6. doi: 10.1038/sc.2010.128.
Thomas SL, Gorassini MA. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol. 2005; 94: 2844-55. doi: 10.1152/jn.00532.2005.
Thomaz SR, Cipriano G Jr, Formiga MF, Fachin-Martins E, Cipriano GFB, Martins WR, Cahalin LP. Effect of electrical stimulation on muscle atrophy and spasticity in patients with spinal cord injury – a systematic review with meta-analysis. Spinal Cord. 2019; 57: 258-266. doi: 10.1038/s41393-019-0250-z.
Thompson AK, Pomerantz FR, Wolpaw JR. Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J Neurosci. 2013; 33: 2365-75. doi: 10.1523/JNEUROSCI.3968-12.2013.
Thompson AK, Stein RB. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles. Exp Brain Res. 2004; 159: 491-500. doi: 10.1007/s00221-004-1972-4.
Thompson AK, Wolpaw JR. H-reflex conditioning during locomotion in people with spinal cord injury. J Physiol. 2021; 599: 2453-2469. doi: 10.1113/JP278173.
Thoumie P, Le Claire G, Beillot J, Dassonville J, Chevalier T, Perrouin-Verbe B, Bedoiseau M, Busnel M, Cormerais A, Courtillon A, et al. Restoration of functional gait in paraplegic patients with the RGO-II hybrid orthosis. A multicenter controlled study. II: Physiological evaluation. Paraplegia. 1995; 33: 654-659.
Thrasher TA, Ward JS, Fisher S. Strength and endurance adaptations to functional electrical stimulation leg cycle ergometry in spinal cord injury. NeuroRehabilitation. 2013; 33: 133-138.
Triolo RJ, Bailey SN, Miller ME, Rohde LM, Anderson JS, Davis JA, Abbas JJ, DiPonio LA, Forrest GP, Gater DR, Yang LJ. Longitudinal performance of a surgically implanted neuroprosthesis for lower-extremity exercise, standing and transfers after spinal cord injury. Arch Phys Med Rehabil. 2012; 93: 896-904.
Tsai CY, Delgado AD, Weinrauch WJ, Manente N, Levy I, Escalon MX, Bryce TN, Spungen AM. Exoskeletal-Assisted Walking During Acute Inpatient Rehabilitation Leads to Motor and Functional Improvement in Persons With Spinal Cord Injury: A Pilot Study. Arch Phys Med Rehabil. 2020; 101: 607-612. doi: 10.1016/j.apmr.2019.11.010.
Tsai CY, Weinrauch WJ, Manente N, Huang V, Bryce TN, Spungen AM. Exoskeletal-Assisted Walking During Acute Inpatient Rehabilitation Enhances Recovery for Persons with Spinal Cord Injury-A Pilot Randomized Controlled Trial. J Neurotrauma. 2024; 41: 2089-2100. doi: 10.1089/neu.2023.0667.
Vaccaro AR, Daugherty RJ, Sheehan TP, Dante SJ, Cotler JM, Balderston RA, Herbison GJ, Northrup BE. Neurologic outcome of early versus late surgery for cervical spinal cord injury. Spine (Phila Pa 1976). 1997 Nov 15;22(22):2609-13. doi: 10.1097/00007632-199711150-00006. PMID: 9399445.
van der Scheer JW, Goosey-Tolfrey VL, Valentino SE, Davis GM, Ho CH. Functional electrical stimulation cycling exercise after spinal cord injury: a systematic review of health and fitness-related outcomes. J Neuroeng Rehabil. 2021; 18: 99. doi: 10.1186/s12984-021-00882-8.
van Dijsseldonk RB, de Jong LAF, Groen BE, et al. Gait Stability Training in a Virtual Environment Improves Gait and Dynamic Balance Capacity in Incomplete Spinal Cord Injury Patients. Front Neurol. 2018; 9: 963. doi: 10.3389/fneur.2018.00963.
van Dijsseldonk RB, Rijken H, van Nes IJW, van de Meent H, Keijsers NLW. Predictors of exoskeleton motor learning in spinal cord injured patients. Disabil Rehabil. 2021; 43: 1982-1988. doi: 10.1080/09638288.2019.1689578. ç
van Hedel HJ; EMSCI Study Group. Gait speed in relation to categories of functional ambulation after spinal cord injury. Neurorehabil Neural Repair. 2009 May;23(4):343-50. doi: 10.1177/1545968308324224.
van Middendorp JJ, Hosman AJ, Donders AR, Pouw MH, Ditunno JF Jr, Curt A, Geurts AC, Van de Meent H; EM-SCI Study Group. A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: a longitudinal cohort study. Lancet. 2011; 377: 1004-10. doi: 10.1016/S0140-6736(10)62276-3.
van Middendorp JJ, Hosman AJ, Pouw MH; EM-SCI Study Group; Van de Meent H. ASIA impairment scale conversion in traumatic SCI: is it related with the ability to walk? A descriptive comparison with functional ambulation outcome measures in 273 patients. Spinal Cord. 2009 Jul;47(7):555-60. doi: 10.1038/sc.2008.162. Epub 2008 Dec 23. PMID: 19104512.
van Silfhout L, Peters AE, Graco M, Schembri R, Nunn AK, Berlowitz DJ. Validation of the Dutch clinical prediction rule for ambulation outcomes in an inpatient setting following traumatic spinal cord injury. Spinal Cord. 2016; 54: 614-8. doi: 10.1038/sc.2015.201.
van Silfhout L, Hosman AJF, Bartels RHMA, Edwards MJR, Abel R, Curt A, van de Meent H; EM-SCI Study Group. Ten Meters Walking Speed in Spinal Cord-Injured Patients: Does Speed Predict Who Walks and Who Rolls? Neurorehabil Neural Repair. 2017; 31: 842-850. doi: 10.1177/1545968317723751.
Varoqui D, Niu X, Mirbagheri MM. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury. J Neuroeng Rehabil. 2014; 11: 46. doi: 10.1186/1743-0003-11-46.
Villiger M, Bohli D, Kiper D, Pyk P, Spillmann J, Meilick B, Curt A, Hepp-Reymond MC, Hotz-Boendermaker S, Eng K. Virtual reality-augmented neurorehabilitation improves motor function and reduces neuropathic pain in patients with incomplete spinal cord injury. Neurorehabil Neural Repair. 2013; 27: 675-83. doi: 10.1177/1545968313490999.
Villiger M, Grabher P, Hepp-Reymond MC, Kiper D, Curt A, Bolliger M, Hotz-Boendermaker S, Kollias S, Eng K, Freund P. Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: a longitudinal pilot study. Front Hum Neurosci. 2015; 9: 254. doi: 10.3389/fnhum.2015.00254.
Villiger M, Liviero J, Awai L, Stoop R, Pyk P, Clijsen R, Curt A, Eng K, Bolliger M. Home-Based Virtual Reality-Augmented Training Improves Lower Limb Muscle Strength, Balance, and Functional Mobility following Chronic Incomplete Spinal Cord Injury. Front. Neurol. 2017; 8.
Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, van der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007; 15: 379-86. doi: 10.1109/tnsre.2007.903919.
Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, Rowald A, Seáñez I, Caban M, Pirondini E, Vat M, McCracken LA, Heimgartner R, Fodor I, Watrin A, Seguin P, Paoles E, Van Den Keybus K, Eberle G, Schurch B, Pralong E, Becce F, Prior J, Buse N, Buschman R, Neufeld E, Kuster N, Carda S, von Zitzewitz J, Delattre V, Denison T, Lambert H, Minassian K, Bloch J, Courtine G. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018; 563: 65-71. doi: 10.1038/s41586-018-0649-2.
Wall T, Feinn R, Chui K, Cheng MS. The effects of the Nintendo™ Wii Fit on gait, balance, and quality of life in individuals with incomplete spinal cord injury. J Spinal Cord Med. 2015; 38: 777–783.
Wan C, Huang S, Wang X, Ge P, Wang Z, Zhang Y, Li Y, Su B. Effects of robot-assisted gait training on cardiopulmonary function and lower extremity strength in individuals with spinal cord injury: A systematic review and meta-analysis. J Spinal Cord Med. 2024; 47: 6-14. doi: 10.1080/10790268.2023.2188392.
Waters RL, Adkins RH, Yakura JS, Sie I. Motor and sensory recovery following incomplete paraplegia. Arch Phys Med Rehabil. 1994 Jan;75(1):67-72. PMID: 8291966.
Weber DJ, Stein RB, Chan KM, Loeb GE, Richmond FJ, Rolf R, James K, Chong SL, Thompson AK, Misiaszek J. Functional electrical stimulation using microstimulators to correct foot drop: a case study. Can J Physiol Pharmacol. 2004; 82: 784-92. doi: 10.1139/y04-078.
Wernig A, Muller S, Nanassy A, Cagol E. Laufband therapy based on ‘rules of spinal locomotion’ is effective in spinal cord injured persons. Eur J Neurosci. 1995; 7: 823-829.
Wernig A, Nanassy A, Muller S. Maintenance of locomotor abilities following Laufband (treadmill) therapy in para- and tetraplegic persons: follow-up studies. Spinal Cord. 1998; 36: 744-749.
Wernig A. Treadmill training after spinal cord injury: good but not better. Neurology. 2006; 67: 1901; author reply 1901-1902.
Wieler M, Stein RB, Ladouceur M, Whittaker M, Smith AW, Naaman S, Barbeau H, Bugaresti J, Aimone E. Multicenter evaluation of electrical stimulation systems for walking. Arch Phys Med Rehabil. 1999; 80: 495-500.
Winchester P, McColl R, Querry R, Foreman N, Mosby J, Tansey K, Williamson J. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair. 2005; 19: 313-24. doi: 10.1177/1545968305281515.
Winchester P, Smith P, Foreman N, Mosby J, Pacheco F, Querry R, Tansey K. A prediction model for determining over ground walking speed after locomotor training in persons with motor incomplete spinal cord injury. J of Spinal Cord Med. 2009; 32: 63-71.
Wirz M, van Hedel HJ, Rupp R, Curt A, Dietz V. Muscle force and gait performance: relationships after spinal cord injury. Arch Phys Med Rehabil. 2006 Sep;87(9):1218-22. doi: 10.1016/j.apmr.2006.05.024.
Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: A multicenter trial. Arch Phys Med Rehabil. 2005; 86: 672-680.
Wirz M, Mach O, Maier D, Benito-Penalva J, Taylor J, Esclarin A, Dietz V. Effectiveness of Automated Locomotor Training in Patients with Acute Incomplete Spinal Cord Injury: A Randomized, Controlled, Multicenter Trial. J Neurotrauma. 2017; 34: 1891-1896. doi: 10.1089/neu.2016.4643.
Wolpaw JR. Treadmill training after spinal cord injury: Good but not better. Neurology. 2006; 66: 466-467.
Wu M, Landry JM, Schmit BD, Hornby TG, Yen SC. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2012; 93: 782-9. doi: 10.1016/j.apmr.2011.12.018.
Wu M, Landry JM, Kim J, Schmit BD, Yen SC, McDonald J, Zhang Y. Repeat Exposure to Leg Swing Perturbations During Treadmill Training Induces Long-Term Retention of Increased Step Length in Human SCI: A Pilot Randomized Controlled Study. Am J Phys Med Rehabil. 2016; 95: 911-920. doi: 10.1097/PHM.0000000000000517.
Wu M, Kim J, Wei F. Facilitating Weight Shifting During Treadmill Training Improves Walking Function in Humans With Spinal Cord Injury: A Randomized Controlled Pilot Study. Am J Med Rehabil. 2018; 97: 585-592. doi: 10.1097/PHM.0000000000000927.
Xiang XN, Ding MF, Zong HY, Liu Y, Cheng H, He CQ, He HC. The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study. Spinal Cord. 2020; 58: 787-794. doi: 10.1038/s41393-020-0423-9.
Xiang XN, Zong HY, Ou Y, Yu X, Cheng H, Du CP, He HC. Exoskeleton-assisted walking improves pulmonary function and walking parameters among individuals with spinal cord injury: a randomized controlled pilot study. J Neuroeng Rehabil. 2021; 18: 86. doi: 10.1186/s12984-021-00880-w.
Yang JF, Norton J, Nevett-Duchcherer J, Roy FD, Gross DP, Gorassini MA. Volitional muscle strength in the legs predicts changes in walking speed following locomotor training in people with chronic spinal cord injury. Phys Ther. 2011; 91: 931-43. doi: 10.2522/ptj.20100163.
Yang JF, Musselman KE, Livingstone D, Brunton K, Hendricks G, Hill D, Gorassini M. Repetitive mass practice or focused precise practice for retraining walking after incomplete spinal cord injury? A pilot randomized clinical trial. Neurorehabil Neural Repair 2014; 28: 314-324.
Yang A, Asselin P, Knezevic S, Kornfeld S, Spungen AM. Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury. Top Spinal Cord Inj Rehabil. 2015; 21: 100-9. doi: 10.1310/sci2102-100.
Yang FA, Chen SC, Chiu JF, Shih YC, Liou TH, Escorpizo R, Chen HC. Body weight-supported gait training for patients with spinal cord injury: a network meta-analysis of randomized controlled trials. Sci Rep. 2022; 12: 19262. doi: 10.1038/s41598-022-23873-8.
Yaşar E, Yılmaz B, Göktepe S, Kesikburun S. The effect of functional electrical stimulation cycling on late functional improvement in patients with chronic incomplete spinal cord injury. Spinal Cord. 2015; 53: 866-869.
Yemisci OU, Ozen S, Saracgil Cosar SN, Afsar SI. Compliance with Long-Term Use of Orthoses Following Spinal Cord Injury. Neurol India. 2022; 70: 618-622. doi: 10.4103/0028-3886.344618.
Yeo E, Chau B, Bradley C, Ruckle DE, Ta P. Virtual Reality Neurorehabilitation for Mobility in Spinal Cord Injury: A Structured Review. Innov Clin Neurosci. 2019; 16: 13-20.
Yıldırım MA, Öneş K, Gökşenoğlu G. Early term effects of robotic assisted gait training on ambulation and functional capacity in patients with spinal cord injury. Turk J Med Sci. 2019; 49: 838-843. doi: 10.3906/sag-1809-7.
Yip CCH, Lam CY, Cheung KMC, Wong YW, Koljonen PA. Knowledge Gaps in Biophysical Changes After Powered Robotic Exoskeleton Walking by Individuals With Spinal Cord Injury-A Scoping Review. Front Neurol. 2022; 13: 792295. doi: 10.3389/fneur.2022.792295.
Yu P, Zhang W, Liu Y, Sheng C, So K-F, Zhou L, Zhu H. The effects and potential mechanisms of locomotor training on improvements of functional recovery after spinal cord injury. Int Rev Neurobiol. 2019; 147: 199-217. doi: 10.1016/bs.irn.2019.08.003.
Zhang L, Lin F, Sun L, Chen C. Comparison of Efficacy of Lokomat and Wearable Exoskeleton-Assisted Gait Training in People With Spinal Cord Injury: A Systematic Review and Network Meta-Analysis. Front. Neurol. 2022: 13. https://doi.org/10.3389/fneur.2022.772660
Zieriacks A, Aach M, Brinkemper A, Koller D, Schildhauer TA, Grasmücke D. Rehabilitation of Acute Vs. Chronic Patients With Spinal Cord Injury With a Neurologically Controlled Hybrid Assistive Limb Exoskeleton: Is There a Difference in Outcome? Front Neurorobot. 2021; 15: 728327. doi: 10.3389/fnbot.2021.728327.
Zörner B, Blanckenhorn WU, Dietz V; EM-SCI Study Group; Curt A. Clinical algorithm for improved prediction of ambulation and patient stratification after incomplete spinal cord injury. J Neurotrauma. 2010 Jan;27(1):241-52. doi: 10.1089/neu.2009.0901.
Zwijgers E, van Dijsseldonk RB, Vos-van der Hulst M, Hijmans JM, Geurts ACH, Keijsers NLW. Efficacy of Walking Adaptability Training on Walking Capacity in Ambulatory People With Motor Incomplete Spinal Cord Injury: A Multicenter Pragmatic Randomized Controlled Trial. Neurorehabil Neural Repair. 2024; 38: 413-424. doi: 10.1177/15459683241248088.
