References
Aach M, Cruciger O, Sczesny-Kaiser M, Höffken O, Meindl RCh, Tegenthoff M, Schwenkreis P, Sankai Y, Schildhauer TA. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J. 2014; 14:2847-53. doi: 10.1016/j.spinee.2014.03.042.
Abou L, Malala VD, Yarnot R, Alluri A, Rice LA. Effects of Virtual Reality Therapy on Gait and Balance Among Individuals With Spinal Cord Injury: A Systematic Review and Meta-analysis. Neurorehabil Neural Repair. 2020; 34: 375-388. doi: 10.1177/1545968320913515.
Abou L, Rice LA. Risk Factors Associated With Falls and Fall-Related Injuries Among Wheelchair Users With Spinal Cord Injury. Arch Rehabil Res Clin Transl. 2022; 4: 100195. doi: 10.1016/j.arrct.2022.100195.
Abou L, Rice LA. Functional balance assessment for predicting future recurrent falls in non-ambulatory individuals with spinal cord injury: a prospective pilot study. Physiother Theory Pract. 2024; 40: 2530-2539. doi: 10.1080/09593985.2023.2266741.
Agarwal S, Kobetic R, Nandurkar S, Marsolais EB. Functional electrical stimulation for walking in paraplegia: 17-year follow-up of 2 cases. J Spinal Cord Med. 2003; 26: 86-91. doi: 10.1080/10790268.2003.11753666.
Alashram AR, Padua E, Annino G. Effects of Whole-Body Vibration on Motor Impairments in Patients With Neurological Disorders: A Systematic Review. Am J Phys Med Rehabil. 2019; 98: 1084-1098. doi: 10.1097/PHM.0000000000001252.
Alashram AR, Annino G, Padua E. Robot-assisted gait training in individuals with spinal cord injury: A systematic review for the clinical effectiveness of Lokomat. J Clin Neurosci. 2021; 91: 260-269. doi: 10.1016/j.jocn.2021.07.019.
Alexander MS, Anderson KD, Biering-Sorensen F, Blight AR, Brannon R, Bryce TN, Creasey G, Catz A, Curt A, Donovan W, Ditunno J, Ellaway P, Finnerup NB, Graves DE, Haynes BA, Heinemann AW, Jackson AB, Johnston MV, Kalpakjian CZ, . . . Whiteneck, G. Outcome measures in spinal cord injury: Recent assessments and recommendations for future directions. Spinal Cord. 2009; 47: 582-591. https://doi.org/10.1038/sc.2009.18
Alexeeva N, Sames C, Jacobs PL, Hobday L, Distasio MM, Mitchell SA, Calancie B. Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial. J Spinal Cord Med. 2011; 34: 362-79. doi: 10.1179/2045772311Y.0000000018.
Amatachaya S, Promkeaw D, Arayawichanon P, Thaweewannakij T, Amatachaya P. Various Surfaces Benefited Functional Outcomes and Fall Incidence in Individuals With Spinal Cord Injury: A Randomized Controlled Trial With Prospective Data Follow-up. Arch Phys Med Rehabil. 2021; 102: 19-26. doi: 10.1016/j.apmr.2020.08.009.
An Y, Park C. The effects of virtual soccer game on balance, gait function, and kick speed in chronic incomplete spinal cord injury: a randomized controlled trial. Spinal Cord. 2022; 60: 504-509. doi: 10.1038/s41393-021-00745-y.
Arber S, Costa RM. Connecting neuronal circuits for movement. Science. 2018; 360: 1403-1404. doi: 10.1126/science.aat5994.
Arora T, Oates A, Lynd K, Musselman KE. Current state of balance assessment during transferring, sitting, standing and walking activities for the spinal cord injured population: A systematic review. J Spinal Cord Med. 2020; 43: 10-23. doi: 10.1080/10790268.2018.1481692.
Arsh A, Darain H, Ullah I, Shakil-Ur-Rehman S. Diagnostic tests to assess balance in patients with spinal cord injury: a systematic review of their validity and reliability. Asian Biomed (Res Rev News). 2021; 15: 111-118. doi: 10.2478/abm-2021-0014. PMID:
Bajd T, Kralj A, Stefancic M, Lavrac N. Use of functional electrical stimulation in the lower extremities of incomplete spinal cord injured patients. Artif Organs. 1999; 23: 403-9. doi: 10.1046/j.1525-1594.1999.06360.x.
Baunsgaard CB, Vig Nissen U, Katrin Brust A, Frotzler A, Ribeill C, Kalke YB, León N, Gómez B, Samuelsson K, Antepohl W, Holmström U, Marklund N, Glott T, Opheim A, Benito J, Murillo N, Nachtegaal J, Faber W, Biering-Sørensen F. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics. Spinal Cord. 2018a; 56: 106-116. doi: 10.1038/s41393-017-0013-7.
Baunsgaard CB, Nissen UV, Brust AK, Frotzler A, Ribeill C, Kalke YB, León N, Gómez B, Samuelsson K, Antepohl W, Holmström U, Marklund N, Glott T, Opheim A, Penalva JB, Murillo N, Nachtegaal J, Faber W, Biering-Sørensen F. Exoskeleton gait training after spinal cord injury: An exploratory study on secondary health conditions. J Rehabil Med. 2018b; 50: 806-813. doi: 10.2340/16501977-2372.
Bayraktar HEN, Yalçin E, Şipal MS, Akyüz M, Akinci MG, Ü Delialioğlu S. The effect of electromyography triggered electrical stimulation to abdominal muscles on sitting balance, respiratory functions, and abdominal muscle thickness in complete spinal cord injury: a randomized controlled trial. Int J Rehabil Res. 2024; 47: 87-96. doi: 10.1097/MRR.0000000000000620.
Behrman AL, Ardolino E, VanHiel LR, Kern M, Atkinson D, Lorenz DJ, Harkema SJ. Assessment of functional improvement without compensation reduces variability of outcome measures after human spinal cord injury. Arch Phys Med Rehabil. 2012; 93: 1518-29.
Benito J, Kumru H, Murillo N, Costa U, Medina J, Tormos JM, Pascual-Leone A, Vidal J. Motor and gait improvement in patients with incomplete spinal cord injury induced by high-frequency repetitive transcranial magnetic stimulation. Top Spinal Cord Inj Rehabil. 2012; 18: 106-12. doi: 10.1310/sci1802-106.
Benn NL, Jervis-Rademeyer H. Souza WH, Pakosh M, Inness EL, Musselman KE. Balance Interventions to Improve Upright Balance Control and Balance Confidence in People With Motor-Incomplete Spinal Cord Injury or Disease: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil. 2025; 106: 444-458. doi: 10.1016/j.apmr.2024.07.013.
Benson I, Hart K, Tussler D, van Middendorp JJ. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil. 2016; 30: 73-84. doi: 10.1177/0269215515575166.
Bergmann M, Zahharova A, Reinvee M, Asser T, Gapeyeva H, Vahtrik D. The effect of functional electrical stimulation and therapeutic exercises on trunk muscle tone and dynamic sitting balance in persons with chronic spinal cord injury: A crossover trial. Medicina (Kaunas). 2019; 55: 619. doi: 10.3390/medicina55100619.
Bjerkefors A, Thorstensson A. Effects of kayak ergometer training on motor performance in paraplegics. Int J Sports Med. 2006; 27: 824-9. doi: 10.1055/s-2005-872970.
Bjerkefors A, Carpenter MG, Thorstensson A. Dynamic trunk stability is improved in paraplegics following kayak ergometer training. Scand J Med Sci Sports. 2007; 17: 672-9. doi: 10.1111/j.1600-0838.2006.00621.x.
Bosch PR, Harris JE, Wing K; American Congress of Rehabilitation Medicine (ACRM) Stroke Movement Interventions Subcommittee. Review of therapeutic electrical stimulation for dorsiflexion assist and orthotic substitution from the American Congress of Rehabilitation Medicine stroke movement interventions subcommittee. Arch Phys Med Rehabil. 2014; 95: 390-6. doi: 10.1016/j.apmr.2013.10.017.
Bosveld R, Field-Fote EC. Single-dose effects of whole body vibration on quadriceps strength in individuals with motor-incomplete spinal cord injury. J Spinal Cord Med. 2015; 38: 784-91. doi: 10.1179/2045772315Y.0000000002.
Boswell-Ruys CL, Harvey LA, Barker JJ, Ben M, Middleton JW, Lord SR. Training unsupported sitting in people with chronic spinal cord injuries: a randomized controlled trial. Spinal Cord. 2010; 48: 138-43. doi: 10.1038/sc.2009.88.
Bowersock CD, Pisolkar T, Omofuma I, Luna T, Khan M, Santamaria V, Stein J, Agrawal S, Harkema SJ, Rejc E. Robotic upright stand trainer (RobUST) and postural control in individuals with spinal cord injury. J Spinal Cord Med. 2023; 46: 889-899. doi: 10.1080/10790268.2022.2069532.
Bowersock CD, Pisolkar T, Ai X, Zhu C, Angeli CA, Harkema SJ, Forrest G, Agrawal S, Rejc E. Standing Reactive Postural Responses of Lower Limbs With and Without Self-Balance Assistance in Individuals With Spinal Cord Injury Receiving Epidural Stimulation. J Neurotrauma. 2024; 41: 1133-1145. doi: 10.1089/neu.2023.0403.
Brazg G, Fahey M, Holleran CL, Connolly M, Woodward J, Hennessy PW, Schmit BD, Hornby TG. Effects of Training Intensity on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study. Neurorehabil Neural Repair. 2017; 31: 944-954. doi: 10.1177/1545968317731538.
Brotherton SS, Krause JS, Nietert PJ. Falls in individuals with incomplete spinal cord injury. Spinal Cord. 2007; 45: 37-40. doi: 10.1038/sj.sc.3101909.
Buehner JJ, Forrest GF, Schmidt-Read M, White S, Tansey K, Basso DM. Relationship between ASIA examination and functional outcomes in the NeuroRecovery Network Locomotor Training Program. Arch Phys Med Rehabil. 2012; 93: 1530-40. doi: 10.1016/j.apmr.2012.02.035.
Calabrò RS, Billeri L, Ciappina F, Balletta T, Porcari B, Cannavò A, Pignolo L, Manuli A, Naro A. Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation. Expert Rev Med Devices. 2022; 19: 83-95. doi: 10.1080/17434440.2021.1894125.
Cardinale M, Bosco C. The use of vibration as an exercise intervention. Exerc Sport Sci Rev. 2003; 31: 3-7. doi: 10.1097/00003677-200301000-00002.
Chang SH, Afzal T; TIRR SCI Clinical Exoskeleton Group; Berliner J, Francisco GE. Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: a pilot randomized study. Pilot Feasibility Stud. 2018; 4: 62. doi: 10.1186/s40814-018-0247-y.
Cheung EYY, Yu KKK, Kwan RLC, Ng CKM, Chau RMW, Cheing GLY. Effect of EMG-biofeedback robotic-assisted body weight supported treadmill training on walking ability and cardiopulmonary function on people with subacute spinal cord injuries – a randomized controlled trial. BMC Neurol. 2019; 19: 140. doi: 10.1186/s12883-019-1361-z.
Chisholm AE, Alamro RA, Williams AM, Lam T. Overground vs. treadmill-based robotic gait training to improve seated balance in people with motor-complete spinal cord injury: a case report. J Neuroeng Rehabil. 2017; 14: 27. doi: 10.1186/s12984-017-0236-z.
Corti M, Patten C, Triggs W. Repetitive transcranial magnetic stimulation of motor cortex after stroke: a focused review. Am J Phys Med Rehabil. 2012; 91: 254-70. doi: 10.1097/PHM.0b013e318228bf0c.
Courtine G, Sofroniew MV. Spinal cord repair: advances in biology and technology. Nat Med. 2019; 25: 898-908. doi: 10.1038/s41591-019-0475-6.
Couturier JL. Efficacy of rapid-rate repetitive transcranial magnetic stimulation in the treatment of depression: a systematic review and meta-analysis. J Psychiatry Neurosci. 2005; 30: 83-90.
Covarrubias-Escudero F, Rivera-Lillo G, Torres-Castro R, Varas-Díaz G. Effects of body weight-support treadmill training on postural sway and gait independence in patients with chronic spinal cord injury. J Spinal Cord Med. 2019; 42: 57-64. doi: 10.1080/10790268.2017.1389676.
D’Addio G. Luppariello L, Gallo F, Bifulco P, Cesarelli M, Lanzillo B. Comparison between clinical and instrumental assessing using Wii Fit system on balance control. IEEE International Symposium on Medical Measurements and Applications (MeMeA). 2014.
De Miguel-Rubio A, Rubio MD, Salazar A, Moral-Munoz JA, Requena F, Camacho R, Lucena-Anton D. Is Virtual Reality Effective for Balance Recovery in Patients with Spinal Cord Injury? A Systematic Review and Meta-Analysis. J Clin Med. 2020; 9: 2861. doi: 10.3390/jcm9092861.
de Oliveira CQ, Middleton JW, Refshauge K, Davis GM. Activity-Based Therapy in a Community Setting for Independence, Mobility, and Sitting Balance for People With Spinal Cord Injuries. J Cent Nerv Syst Dis. 2019; 11: 1179573519841623. doi: 10.1177/1179573519841623.
De Oliveira CQ, Bundy A, Middleton JW, Refshauge K, Rogers K, Davis GM. Activity-Based Therapy for Mobility, Function and Quality of Life after Spinal Cord Injuries- A Mixed- Methods Case Series. J Clin Med. 2023; 12: 7588. doi: 10.3390/jcm12247588.
De Ridder D, Manning P, Cape G, Vanneste S, Langguth B, Glue P. Chapter 2 – Pathophysiology-Based Neuromodulation for Addictions: An Overview. Neuropathology of Drug Addictions and Substance Misuse. 2016: 1: 14-24.
DiPiro ND, Embry AE, Fritz SL, Middleton A, Krause JS, Gregory CM. Effects of aerobic exercise training on fitness and walking-related outcomes in ambulatory individuals with chronic incomplete spinal cord injury. Spinal Cord. 2016; 54: 675-81. doi: 10.1038/sc.2015.212.
Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M, Scott M; Spinal Cord Injury Locomotor Trial Group. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006; 66: 484-93. doi: 10.1212/01.wnl.0000202600.72018.39.
Dohle CI, Reding MJ. Management of medical complications. Continuum (Minneap Minn). 2011; 17: 510-29. doi: 10.1212/01.CON.0000399070.54320.0c.
Duddy D, Doherty R, Connolly J, McNally S, Loughrey J, Faulkner M. The Effects of Powered Exoskeleton Gait Training on Cardiovascular Function and Gait Performance: A Systematic Review. Sensors (Basel). 2021; 21: 3207. doi: 10.3390/s21093207.
Duffell LD, Brown GL, Mirbagheri MM. Interventions to Reduce Spasticity and Improve Function in People With Chronic Incomplete Spinal Cord Injury: Distinctions Revealed by Different Analytical Methods. Neurorehabil Neural Repair. 2015; 29: 566-76. doi: 10.1177/1545968314558601.
Edwards DJ, Forrest G, Cortes M, Weightman MM, Sadowsky C, Chang SH, Furman K, Bialek A, Prokup S, Carlow J, VanHiel L, Kemp L, Musick D, Campo M, Jayaraman A. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial. Spinal Cord. 2022; 60: 522-532. doi: 10.1038/s41393-022-00751-8.
El Semary MM. Daker LI. Influence of percentage of body-weight support on gait in patients with traumatic incomplete spinal cord injury. Egypt J Neurol Psychiat Neurosurg. 2019: 55. https://doi.org/10.1186/s41983-019-0076-9
Elahi B, Elahi B, Chen R. Effect of transcranial magnetic stimulation on Parkinson motor function–systematic review of controlled clinical trials. Mov Disord. 2009; 24: 357-63. doi: 10.1002/mds.22364.
Esquenazi A, Talaty M. Robotics for Lower Limb Rehabilitation. Phys Med Rehabil Clin N Am. 2019; 30: 385-397. doi: 10.1016/j.pmr.2018.12.012.
Evans NH, Suri C, Field-Fote EC. Walking and Balance Outcomes Are Improved Following Brief Intensive Locomotor Skill Training but Are Not Augmented by Transcranial Direct Current Stimulation in Persons With Chronic Spinal Cord Injury. Front Hum Neurosci. 2022; 16: 849297. doi: 10.3389/fnhum.2022.849297.
Fang CY, Tsai JL, Li GS, Lien AS, Chang YJ. Effects of Robot-Assisted Gait Training in Individuals with Spinal Cord Injury: A Meta-analysis. Biomed Res Int. 2020; 2020: 2102785. doi: 10.1155/2020/2102785.
Federici S, Meloni F, Bracalenti M, De Filippis ML. The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: A systematic review. NeuroRehabilitation. 2015; 37: 321-40. doi: 10.3233/NRE-151265.
Fleerkotte BM, Koopman B, Buurke JH, van Asseldonk EH, van der Kooij H, Rietman JS. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. J Neuroeng Rehabil. 2014; 11: 26. doi: 10.1186/1743-0003-11-26.
Fok KL, Lee JW, Unger J, Chan K, Musselman KE, Masani K. Co-contraction of ankle muscle activity during quiet standing in individuals with incomplete spinal cord injury is associated with postural instability. Sci Rep. 2021; 11: 19599. doi: 10.1038/s41598-021-99151-w.
Forrest GF, Lorenz DJ, Hutchinson K, Vanhiel LR, Basso DM, Datta S, Sisto SA, Harkema SJ. Ambulation and balance outcomes measure different aspects of recovery in individuals with chronic, incomplete spinal cord injury. Arch Phys Med Rehabil. 2012; 93: 1553-64. doi: 10.1016/j.apmr.2011.08.051.
Fritz SL, Merlo-Rains AM, Rivers ED, Peters DM, Goodman A, Watson ET, Carmichael BM, McClenaghan BA. An intensive intervention for improving gait, balance, and mobility in individuals with chronic incomplete spinal cord injury: a pilot study of activity tolerance and benefits. Arch Phys Med Rehabil. 2011; 92: 1776-84. doi: 10.1016/j.apmr.2011.05.006.
Fritz H, Patzer D, Galen SS. Robotic exoskeletons for reengaging in everyday activities: promises, pitfalls, and opportunities. Disabil Rehabil. 2019; 41: 560-563. doi: 10.1080/09638288.2017.1398786.
Galea MP, Dunlop SA, Geraghty T, Davis GM, Nunn A, Olenko L; SCIPA Switch-On Trial Collaborators. SCIPA Full-On: A Randomized Controlled Trial Comparing Intensive Whole-Body Exercise and Upper Body Exercise After Spinal Cord Injury. Neurorehabil Neural Repair. 2018; 32: 557-567. doi: 10.1177/1545968318771213.
Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J Neuroeng Rehabil. 2018; 15: 46. doi: 10.1186/s12984-018-0383-x.
Goel T, Sharma N, Gehlot A, Srivastav AK. Effectiveness of immersive virtual reality training to improve sitting balance control among individuals with acute and sub-acute paraplegia: A randomized clinical trial. J Spinal Cord Med. 2023; 46: 964-974. doi: 10.1080/10790268.2021.2012053.
Gorgey AS. Robotic exoskeletons: The current pros and cons. World J Orthop. 2018; 9: 112-119. doi: 10.5312/wjo.v9.i9.112.
Grigorenko A, Bjerkefors A, Rosdahl H, Hultling C, Alm M, Thorstensson A. Sitting balance and effects of kayak training in paraplegics. J Rehabil Med. 2004; 36: 110-6. doi: 10.1080/16501970310020401.
Harkema SJ, Schmidt-Read M, Lorenz DJ, Edgerton VR, Behrman AL. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation. Arch Phys Med Rehabil. 2012; 93: 1508-17. Doi: 10.1016/j.apmr.2011.01.024.
Harvey LA, Ristev D, Hossain MS, Hossain MA, Bowden JL, Boswell-Ruys CL, Hossain MM, Ben M. Training unsupported sitting does not improve ability to sit in people with recently acquired paraplegia: a randomised trial. J Physiother. 2011; 57: 83-90. doi: 10.1016/S1836-9553(11)70018-2.
Hayes HB, Jayaraman A, Herrmann M, Mitchell GS, Rymer WZ, Trumbower RD. Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial. Neurology. 2014; 82: 104-13. doi: 10.1212/01.WNL.0000437416.34298.43.
Heinemann AW, Kinnett-Hopkins D, Mummidisetty CK, Bond RA, Ehrlich-Jones L, Furbish C, Field-Fote E, Jayaraman A. Appraisals of robotic locomotor exoskeletons for gait: focus group insights from potential users with spinal cord injuries. Disabil Rehabil Assist Technol. 2020; 15: 762-772. doi: 10.1080/17483107.2020.1745910.
Henderson A, Korner-Bitensky N, Levin M. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil. 2007; 14: 52-61. doi: 10.1310/tsr1402-52.
Hofer AS, Schwab ME. Enhancing rehabilitation and functional recovery after brain and spinal cord trauma with electrical neuromodulation. Curr Opin Neurol. 2019; 32: 828-835. doi: 10.1097/WCO.0000000000000750.
Holleran CL, Hennessey PW, Leddy AL, Mahtani GB, Brazg G, Schmit BD, Hornby TG. High-Intensity Variable Stepping Training in Patients With Motor Incomplete Spinal Cord Injury: A Case Series. J Neurol Phys Ther. 2018; 42: 94-101. doi: 10.1097/NPT.0000000000000217.
Hong E, Gorman PH, Forrest GF, Asselin PK, Knezevic, Scott W, Wojciehowski SB, Kornfeld S, Spungen AM. Mobility skills with exoskeletal-assisted walking in persons with SCI: Results from a three-center randomized clinical trial. Front Robot. 2020; 7. https://doi.org/10.3389/frobt.2020.00093
Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing. 2006; 35: ii7-ii11. doi: 10.1093/ageing/afl077.
Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther. 2005; 85: 52-66.
Hosseinzadeh Z, Ardakani MK, Minoonejad H. A systematic review of validity and reliability assessment of measuring balance and walking at the level of International Classification of Functioning, Disability and Health (ICF) in people with spinal cord injury. J Spinal Cord Med. 2024; 47: 813-823. doi: 10.1080/10790268.2024.2335413.
Houston DJ, Lee JW, Unger J, Masani K, Musselman KE. Feedback balance training for standing balance performance among individuals with incomplete spinal cord injury: A case series. Front Neurol. 2020; 11. https://doi.org/10.3389/fneur.2020.00680
Houston DJ, Unger J, Lee JW, Masani K, Musselman KE. Perspectives of individuals with chronic spinal cord injury following novel balance training involving functional electrical stimulation with visual feedback: a qualitative exploratory study. J Neuroeng Rehabil. 2021; 18: 57. doi: 10.1186/s12984-021-00861-z.
Huxham FE, Goldie PA, Patla AE. Theoretical considerations in balance assessment. Aust J Physiother. 2001; 47: 89-100. doi: 10.1016/s0004-9514(14)60300-7.
Ilha J, Abou L, Romanini F, Dall Pai AC, Mochizuki L. Postural control and the influence of the extent of thigh support on dynamic sitting balance among individuals with thoracic spinal cord injury. Clin Biomech (Bristol). 2020; 73: 108-114. doi: 10.1016/j.clinbiomech.2020.01.012.
In T, Jung K, Lee MG, Cho HY. Whole-body vibration improves ankle spasticity, balance, and walking ability in individuals with incomplete cervical spinal cord injury. NeuroRehabilitation. 2018; 42: 491-497. doi: 10.3233/NRE-172333.
Jamwal PK, Hussain S, Ghayesh MH. Robotic orthoses for gait rehabilitation: An overview of mechanical design and control strategies. Proc Inst Mech Eng H. 2020; 234: 444-457. doi: 10.1177/0954411919898293.
Jang TG, Choi SH, Yu SH, Kim DH, Han IH, Nam KH. Exoskeleton-assisted Gait Training in Spinal Disease With Gait Disturbance. Korean J Neurotrauma. 2022; 18: 316-323. doi: 10.13004/kjnt.2022.18.e25.
Jansen O, Grasmuecke D, Meindl RC, Tegenthoff M, Schwenkreis P, Sczesny-Kaiser M, Wessling M, Schildhauer TA, Fisahn C, Aach M. Hybrid Assistive Limb Exoskeleton HAL in the Rehabilitation of Chronic Spinal Cord Injury: Proof of Concept; the Results in 21 Patients. World Neurosurg. 2018; 110:e73-e78. doi: 10.1016/j.wneu.2017.10.080.
Jayaraman A, Thompson CK, Rymer WZ, Hornby TG. Short-term maximal-intensity resistance training increases volitional function and strength in chronic incomplete spinal cord injury: a pilot study. J Neurol Phys Ther. 2013; 37: 112-7. doi: 10.1097/NPT.0b013e31828390a1.
Jones ML, Evans N, Tefertiller C, Backus D, Sweatman M, Tansey K, Morrison S. Activity-based therapy for recovery of walking in individuals with chronic spinal cord injury: results from a randomized clinical trial. Arch Phys Med Rehabil. 2014a; 95: 2239-46.e2. doi: 10.1016/j.apmr.2014.07.400.
Jones ML, Evans N, Tefertiller C, Backus D, Sweatman M, Tansey K, Morrison S. Activity-based therapy for recovery of walking in chronic spinal cord injury: results from a secondary analysis to determine responsiveness to therapy. Arch Phys Med Rehabil. 2014b; 95: 2247-52. doi: 10.1016/j.apmr.2014.07.401.
Kapadia N, Masani K, Catharine Craven B, Giangregorio LM, Hitzig SL, Richards K, Popovic MR. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: Effects on walking competency. J Spinal Cord Med. 2014; 37: 511-24. doi: 10.1179/2045772314Y.0000000263.
Kerdraon J, Previnaire JG, Tucker M, Coignard P, Allegre W, Knappen E, Ames A. Evaluation of safety and performance of the self balancing walking system Atalante in patients with complete motor spinal cord injury. Spinal Cord Ser Cases. 2021; 7: 71. doi: 10.1038/s41394-021-00432-3.
Khan A, Pujol C, Laylor M, Unic N, Pakosh M, Dawe J, Musselman KE. Falls after spinal cord injury: a systematic review and meta-analysis of incidence proportion and contributing factors. Spinal Cord. 2019a; 57: 526-539. doi: 10.1038/s41393-019-0274-4.
Khan AS, Livingstone DC, Hurd CL, Duchcherer J, Misiaszek JE, Gorassini MA, Manns PJ, Yang JF. Retraining walking over ground in a powered exoskeleton after spinal cord injury: a prospective cohort study to examine functional gains and neuroplasticity. J Neuroeng Rehabil. 2019b; 16: 145. doi: 10.1186/s12984-019-0585-x.
Khan M, Luna T, Santamaria V, Omofuma I, Martelli D, Rejc E, et al. Stand trainer With applied forces at the pelvis and trunk: response to perturbations and assist-As-needed support. IEEE Trans Neural Syst Rehabil Eng 2019c; 27: 1855–1864.
Khurana M, Walia S, Noohu MM. Study on the Effectiveness of Virtual Reality Game-Based Training on Balance and Functional Performance in Individuals with Paraplegia. Top Spinal Cord Inj Rehabil. 2017; 23: 263-270. doi: 10.1310/sci16-00003.
Kim J, Chung Y, Shin H. Effects of balance training on patients with spinal cord injury. J. Physther. 2010; 22: 311-316. https://doi.org/10.1589/jpts.22.311
Kim HS, Park JH, Lee HS, Lee JY, Jung JW, Park SB, Hyun DJ, Park S, Yoon J, Lim H, Choi YY, Kim MJ. Effects of Wearable Powered Exoskeletal Training on Functional Mobility, Physiological Health and Quality of Life in Non-ambulatory Spinal Cord Injury Patients. J Korean Med Sci. 2021; 36: e80. doi: 10.3346/jkms.2021.36.e80.
Klamruen P, Suttiwong J, Aneksan B, Muangngoen M, Denduang C, Klomjai W. Effects of Anodal Transcranial Direct Current Stimulation With Overground Gait Training on Lower Limb Performance in Individuals With Incomplete Spinal Cord Injury. Arch Phys Med Rehabil. 2024; 105: 857-867. doi: 10.1016/j.apmr.2023.09.025.
Knikou M. Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury. Exp Brain Res. 2013; 228: 279-96. doi: 10.1007/s00221-013-3560-y.
Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003; 2: 145-56. doi: 10.1016/s1474-4422(03)00321-1.
Kobetic R, Triolo RJ, Marsolais EB. Muscle selection and walking performance of multichannel FES systems for ambulation in paraplegia. IEEE Trans Rehabil Eng. 1997; 5: 23-9. doi: 10.1109/86.559346.
Kolakowsky-Hayner SA. Crew J. Moran S. Shah A. Safety and Feasibility of using the EksoTM Bionic Exoskeleton to Aid Ambulation after Spinal Cord Injury. J of Spine. 2013: 3. doi:10.4172/2165-7939.S4-003
Kouwijzer I, van der Meer M, Janssen TWJ. Effects of trunk muscle activation on trunk stability, arm power, blood pressure and performance in wheelchair rugby players with a spinal cord injury. J Spinal Cord Med. 2022; 45: 605-613. doi: 10.1080/10790268.2020.1830249.
Krogh S, Aagaard P, Jonsson AB, Figlewski K, Kasch H. Effects of repetitive transcranial magnetic stimulation on recovery in lower limb muscle strength and gait function following spinal cord injury: a randomized controlled trial. Spinal Cord. 2022; 60: 135-141. doi: 10.1038/s41393-021-00703-8.
Kuhn D, Leichtfried V, Schobersberger W. Four weeks of functional electrical stimulated cycling after spinal cord injury: a clinical cohort study. Int J Rehabil Res. 2014; 37: 243-50. doi: 10.1097/MRR.0000000000000062.
Kumru H, Murillo N, Benito-Penalva J, Tormos JM, Vidal J. Transcranial direct current stimulation is not effective in the motor strength and gait recovery following motor incomplete spinal cord injury during Lokomat(®) gait training. Neurosci Lett. 2016; 620: 143-7. doi: 10.1016/j.neulet.2016.03.056.
Labruyère R, van Hedel HJA. Strength training versus robot-assisted gait training after incomplete spinal cord injury: a randomized pilot study in patients depending on walking assistance. J Neuroeng Rehabil 2014; 11: 4.
Lajeunesse V, Vincent C, Routhier F, Careau E, Michaud F. Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil Rehabil Assist Technol. 2016; 11: 535-47. doi: 10.3109/17483107.2015.1080766.
Lam T, Pauhl K, Ferguson A, Malik RN; BKin; Krassioukov A, Eng JJ. Training with robot-applied resistance in people with motor-incomplete spinal cord injury: Pilot study. J Rehabil Res Dev. 2015; 52: 113-29. doi: 10.1682/JRRD.2014.03.0090.
Larson CA. Effectiveness of Activity-Based Therapy for Individuals With Spinal Cord Injury in Promoting Static and Dynamic Sitting Balance: Is Olfactory Mucosa Autograft a Factor? Top Spinal Cord Inj Rehabil. 2022; 28: 96-112. doi: 10.46292/sci21-00030.
Lee MJ, Lee SM. The Effect of Virtual Reality Exercise Program on Sitting Balance Ability of Spinal Cord Injury Patients. Healthcare (Basel). 2021; 9: 183. doi: 10.3390/healthcare9020183.
Leemhuis E, Esposito RM, De Gennaro L, Pazzaglia M. Go Virtual to Get Real: Virtual Reality as a Resource for Spinal Cord Treatment. Int J Environ Res Public Health. 2021; 18: 1819. doi: 10.3390/ijerph18041819.
Lei Y, Rios V, Ji J, Duhon B, Boyd H, Xu Y. Quantifying unsupported sitting posture impairments in humans with cervical spinal cord injury using a head-mounted IMU sensor. Spinal Cord. 2024; 62: 65-70. doi: 10.1038/s41393-023-00951-w.
Levi MF, Weiss PL, Keshner EA. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys Ther. 2015; 95:415-25. doi: 10.2522/ptj.20130579.
Liberson WT, Holmquest HJ, Scot D, Dow M. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961; 42: 101-5.
Lima MC, Fregni F. Motor cortex stimulation for chronic pain: systematic review and meta-analysis of the literature. Neurology. 2008; 70: 2329-37. doi: 10.1212/01.wnl.0000314649.38527.93.
Lin JT, Hsu CJ, Dee W, Chen D, Rymer WZ, Wu M. Motor Adaptation to Weight Shifting Assistance Transfers to Overground Walking in People with Spinal Cord Injury. PM R. 2019; 11: 1200-1209. doi: 10.1002/pmrj.12132.
Lin JT, Hsu CJ, Dee W, Chen D, Rymer WZ, Wu M. Varied movement errors drive learning of dynamic balance control during walking in people with incomplete spinal cord injury: a pilot study. Exp Brain Res. 2020; 238: 981-993. doi: 10.1007/s00221-020-05776-0.
Lin JT, Hsu CJ, Dee W, Chen D, Rymer WZ, Wu M. Anodal transcutaneous DC stimulation enhances learning of dynamic balance control during walking in humans with spinal cord injury. Exp Brain Res. 2022; 240: 1943-1955. doi: 10.1007/s00221-022-06388-6.
Lorach H, Galvez A, Spagnolo V, Martel F, Karakas S, Intering N, Vat M, Faivre O, Harte C, Komi S, Ravier J, Collin T, Coquoz L, Sakr I, Baaklini E, Hernandez-Charpak SD, Dumont G, Buschman R, Buse N, Denison T, van Nes I, Asboth L, Watrin A, Struber L, Sauter-Starace F, Langar L, Auboiroux V, Carda S, Chabardes S, Aksenova T, Demesmaeker R, Charvet G, Bloch J, Courtine G. Walking naturally after spinal cord injury using a brain-spine interface. Nature. 2023; 618: 126-133. doi: 10.1038/s41586-023-06094-5.
Lorenz DJ, Datta S, Harkema SJ. Longitudinal patterns of functional recovery in patients with incomplete spinal cord injury receiving activity-based rehabilitation. Arch Phys Med Rehabil. 2012; 93: 1541-52. doi: 10.1016/j.apmr.2012.01.027.
Lorusso M, Tagliamonte NL, Tramontano M, Fresch A, Granelli G, Smania N, Tamburella F. Technology-assisted balance assessment and rehabilitation in individuals with spinal cord injury: A systematic review. NeuroRehabilitation. 2022; 51: 213-230. doi: 10.3233/NRE-220060.
Lotter JK, Henderson CE, Plawecki A, Holthus ME, Lucas EH, Ardestani MM, Schmit BD, Hornby TG. Task-Specific Versus Impairment-Based Training on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study. Neurorehabil Neural Repair. 2020; 34: 627-639. doi: 10.1177/1545968320927384.
Louie DR, Eng JJ, Lam T; Spinal Cord Injury Research Evidence (SCIRE) Research Team. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. J Neuroeng Rehabil. 2015; 12: 82. doi: 10.1186/s12984-015-0074-9.
Luna TD, Santamaria V, Omofumal I, Khan MI, Agrawal SK. editors. Control mechanisms in standing while simultaneously receiving perturbations and active assistance from the robotic upright stand trainer (RobUST)). International conference for biomedical robotics and biomechatronics (BioRob); 2020. New York, USA: IEEE.
Lynch M, Duffell L, Sandhu M, Srivatsan S, Deatsch K, Kessler A, Mitchell GS, Jayaraman A, Rymer WZ. Effect of acute intermittent hypoxia on motor function in individuals with chronic spinal cord injury following ibuprofen pretreatment: A pilot study. J Spinal Cord Med. 2017; 40: 295-303. doi: 10.1080/10790268.2016.1142137.
Maki BE, McIlroy WE. Control of rapid limb movements for balance recovery: age-related changes and implications for fall prevention. Age Ageing. 2006; 35: ii12-ii18. doi: 10.1093/ageing/afl078.
Manzanares A, Camblor Á, Romero-Arenas S, Segado F, Gil-Arias A. Effect of a semi-immersive virtual reality navigation therapy on quality of life in persons with spinal cord injury. Disabil Rehabil Assist Technol. 2021: 1-6. doi: 10.1080/17483107.2021.1913520.
Marinho-Buzelli AR, Rouhani H, Craven BC, Masani K, Barela JA, Popovic MR, Verrier MC. Effects of water immersion on quasi-static standing exploring center of pressure sway and trunk acceleration: a case series after incomplete spinal cord injury. Spinal Cord Ser Cases. 2019; 5: 5. doi: 10.1038/s41394-019-0147-2.
Marsolais EB, Kobetic R. Implantation techniques and experience with percutaneous intramuscular electrodes in the lower extremities. J Rehabil Res Dev. 1986; 23: 1-8.
Martin JL, Barbanoj MJ, Schlaepfer TE, Thompson E, Pérez V, Kulisevsky J. Repetitive transcranial magnetic stimulation for the treatment of depression. Systematic review and meta-analysis. Br J Psychiatry. 2003; 182: 480-91. doi: 10.1192/bjp.182.6.480.
Martinez SA, Nguyen ND, Bailey E, Doyle-Green D, Hauser HA, Handrakis JP, Knezevic S, Marett C, Weinman J, Romero AF, Santiago TM, Yang AH, Yung L, Asselin PK, Weir JP, Kornfeld SD, Bauman WA, Spungen AM, Harel NY. Multimodal cortical and subcortical exercise compared with treadmill training for spinal cord injury. PLoS One. 2018; 13: e0202130. doi: 10.1371/journal.pone.0202130.
McKinley WO, Seel RT, Hardman JT. Nontraumatic spinal cord injury: incidence, epidemiology, and functional outcome. Arch Phys Med Rehabil. 1999; 80: 619-23. doi: 10.1016/s0003-9993(99)90162-4.
Mehrholz J, Kugler J, Pohl M. Locomotor training for walking after spinal cord injury. Cochrane Database of Systematic Reviews. 2012, Issue 11. Art. No.: CD006676. DOI: 10.1002/14651858.CD006676.pub3.
Mıdık M, Paker N, Buğdaycı D, Mıdık AC. Effects of robot-assisted gait training on lower extremity strength, functional independence, and walking function in men with incomplete traumatic spinal cord injury. Turk J Phys Med Rehabil. 2020; 66: 54-59. doi: 10.5606/tftrd.2020.3316.
Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices (Auckl). 2016; 9: 455-66. doi: 10.2147/MDER.S103102.
Morgan DW, Stevens SL. Use of water- and land-based gait training to improve walking capacity in adults with complete spinal cord injury: A pilot study. J Spinal Cord Med. 2024; 47: 404-411. doi: 10.1080/10790268.2022.2088507.
Musselman KE, Fouad K, Misiaszek JE, Yang JF. Training of walking skills overground and on the treadmill: case series on individuals with incomplete spinal cord injury. Phys Ther. 2009; 89: 601-11. doi: 10.2522/ptj.20080257.
Musselman KE, Unger J, Lemay JF. Assessment of postural control after spinal cord injury or disease: A narrative review. In Diagnosis and Treatment of Spinal Cord Injury. Chapter 16. 199-213.
Nair MS, Kulkarni VN, Shyam AK. Combined Effect of Virtual Reality Training (VRT) and Conventional Therapy on Sitting Balance in Patients with Spinal Cord Injury (SCI): Randomized Control Trial. Neurol India. 2022; 70: S245-S250. doi: 10.4103/0028-3886.360934.
Nam KY, Kim HJ, Kwon BS, Park J-W, Lee JH, Yoo A. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroeng Rehabil. 2017; 14:24. doi: 10.1186/s12984-017-0232-3
Nam SM, Koo DK, Kwon JW. Efficacy of Wheelchair Skills Training Program in Enhancing Sitting Balance and Pulmonary Function in Chronic Tetraplegic Patients: A Randomized Controlled Study. Medicina (Kaunas). 2023; 59: 1610. doi: 10.3390/medicina59091610.
Naro A, Billeri L, Balletta T, Lauria P, Onesta MP, Calabrò RS. Finding the Way to Improve Motor Recovery of Patients with Spinal Cord Lesions: A Case-Control Pilot Study on a Novel Neuromodulation Approach. Brain Sci. 2022; 12: 119. doi: 10.3390/brainsci12010119.
Navarrete-Opazo A, Alcayaga J, Sepúlveda O, Rojas E, Astudillo C. Repetitive Intermittent Hypoxia and Locomotor Training Enhances Walking Function in Incomplete Spinal Cord Injury Subjects: A Randomized, Triple-Blind, Placebo-Controlled Clinical Trial. J Neurotrauma. 2017a; 34: 1803-1812. doi: 10.1089/neu.2016.4478.
Navarrete-Opazo A, Alcayaga JJ, Sepúlveda O, Varas G. Intermittent Hypoxia and Locomotor Training Enhances Dynamic but Not Standing Balance in Patients With Incomplete Spinal Cord Injury. Arch Phys Med Rehabil. 2017b; 98: 415-424. doi: 10.1016/j.apmr.2016.09.114.
Neville BT, Murray D, Rosen KB, Bryson CA, Collins JP, Guccione AA. Effects of Performance-Based Training on Gait and Balance in Individuals With Incomplete Spinal Cord Injury. Arch Phys Med Rehabil. 2019; 100: 1888-1893. doi: 10.1016/j.apmr.2019.03.019.
Nithiatthawanon T, Amatachaya P, Thaweewannakij T, Manimmanakorn N, Sooknuan T, Amatachaya S. Immediate effects of lower limb loading exercise during stepping with and without augmented loading feedback on mobility of ambulatory individuals with spinal cord injury: a single-blinded, randomized, cross-over trial. Spinal Cord. 2020; 58: 1301-1309. doi: 10.1038/s41393-020-0498-3.
Niu X, Varoqui D, Kindig M, Mirbagheri MM. Prediction of gait recovery in spinal cord injured individuals trained with robotic gait orthosis. J Neuroeng Rehabil. 2014; 11: 42. doi: 10.1186/1743-0003-11-42.
Noamani A, Lemay JF, Musselman KE, Rouhani H. Characterization of standing balance after incomplete spinal cord injury: Alteration in integration of sensory information in ambulatory individuals. Gait & Posture. 2021: 83: 152-159
Okawara H, Sawada T, Matsubayashi K, Sugai K, Tsuji O, Nagoshi N, Matsumoto M, Nakamura M. Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: a clinical study. Spinal Cord. 2020; 58: 520-527. doi: 10.1038/s41393-019-0403-0.
Okawara H, Tashiro S, Sawada T, Sugai K, Matsubayashi K, Kawakami M, Nori S, et al. Neurorehabilitation using a voluntary driven exoskeleton robot improves trunk function in patients with chronic spinal cord injury: a single-arm study. Neural Regen Res. 2022; 17: 427-432. doi: 10.4103/1673-5374.317983.
Oh DW, Park HJ. One-year follow-up of the effects of community-based ambulation training for ambulatory patients with incomplete spinal cord injury: a case series. NeuroRehabilitation. 2013; 32: 425-32. doi: 10.3233/NRE-130864.
Palermo AE, Kirk-Sanchez NJ, Garcia KL, Nash MS, Cahalin LP. Inspiratory Muscle Performance Is Related to Seated Balance Function in People With Spinal Cord Injury: An Observational Study. Arch Phys Med Rehabil. 2022; 103: 1303-1310. doi: 10.1016/j.apmr.2021.11.006.
Piira A, Lannem AM, Sørensen M, Glott T, Knutsen R, Jørgensen L, Gjesdal K, Hjeltnes N, Knutsen SF. Manually assisted body-weight supported locomotor training does not re-establish walking in non-walking subjects with chronic incomplete spinal cord injury: A randomized clinical trial. J Rehabil Med. 2019a; 51: 113-119. doi: 10.2340/16501977-2508.
Piira A, Lannem AM, Sørensen M, Glott T, Knutsen R, Jørgensen L, Gjesdal K, Hjeltnes N, Knutsen SF. Robot-assisted locomotor training did not improve walking function in patients with chronic incomplete spinal cord injury: A randomized clinical trial. J Rehabil Med. 2019b; 51: 385-389. doi: 10.2340/16501977-2547.
Platz T, Gillner A, Borgwaldt N, Kroll S, Roschka S. Device-Training for Individuals with Thoracic and Lumbar Spinal Cord Injury Using a Powered Exoskeleton for Technically Assisted Mobility: Achievements and User Satisfaction. Biomed Res Int. 2016; 2016: 8459018. doi: 10.1155/2016/8459018.
Postol N, Spratt NJ, Bivard A, Marquez J. Physiotherapy using a free-standing robotic exoskeleton for patients with spinal cord injury: a feasibility study. J Neuroeng Rehabil. 2021; 18: 180. doi: 10.1186/s12984-021-00967-4.
Pramodhyakul N, Amatachaya P, Sooknuan T, Arayawichanon P, Amatachaya S. Visuotemporal cues clinically improved walking ability of ambulatory patients with spinal cord injury within 5 days. J Spinal Cord Med. 2016; 39: 405-11. doi: 10.1179/2045772315Y.0000000058.
Qi Y, Zhang X, Zhao Y, Xie H, Shen X, Niu W, Wang Y. The effect of wheelchair Tai Chi on balance control and quality of life among survivors of spinal cord injuries: A randomized controlled trial. Complement Ther Clin Pract. 2018; 33: 7-11. doi: 10.1016/j.ctcp.2018.07.004.
Raithatha R, Carrico C, Powell ES, Westgate PM, Chelette Ii KC, Lee K, Dunsmore L, Salles S, Sawaki L. Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: A randomized pilot study. NeuroRehabilitation. 2016; 38: 15-25. doi: 10.3233/NRE-151291.
Rejc E, Bowersock C, Pisolkar T, Omofuma I, Luna T, Khan M, Santamaria V, Ugiliweneza B, Angeli CA, Forrest GF, Stein J, Agrawal S, Harkema SJ. Robotic Postural Training With Epidural Stimulation for the Recovery of Upright Postural Control in Individuals With Motor Complete Spinal Cord Injury: A Pilot Study. Neurotrauma Rep. 2024a; 5: 277-292. doi: 10.1089/neur.2024.0013.
Rejc E, Zaccaron S, Bowersock C, Pisolkar T, Ugiliweneza B, Forrest GF, Agrawal S, Harkema SJ, Angeli CA. Effects of Robotic Postural Stand Training with Epidural Stimulation on Sitting Postural Control in Individuals with Spinal Cord Injury: A Pilot Study. J Clin Med. 2024b; 13: 4309. doi: 10.3390/jcm13154309.
Rodríguez-Fernández A, Lobo-Prat J, Tarragó R, Chaverri D, Iglesias X, Guirao-Cano L, Font-Llagunes JM. Comparing walking with knee-ankle-foot orthoses and a knee-powered exoskeleton after spinal cord injury: a randomized, crossover clinical trial. Sci Rep. 2022; 12: 19150. doi: 10.1038/s41598-022-23556-4.
Rowald A, Komi S, Demesmaeker R, Baaklini E, Hernandez-Charpak SD, Paoles E, Montanaro H, Cassara A, Becce F, Lloyd B, Newton T, Ravier J, Kinany N, D’Ercole M, Paley A, Hankov N, Varescon C, McCracken L, Vat M, Caban M, Watrin A, Jacquet C, Bole-Feysot L, Harte C, Lorach H, Galvez A, Tschopp M, Herrmann N, Wacker M, Geernaert L, Fodor I, Radevich V, Van Den Keybus K, Eberle G, Pralong E, Roulet M, Ledoux JB, Fornari E, Mandija S, Mattera L, Martuzzi R, Nazarian B, Benkler S, Callegari S, Greiner N, Fuhrer B, Froeling M, Buse N, Denison T, Buschman R, Wende C, Ganty D, Bakker J, Delattre V, Lambert H, Minassian K, van den Berg CAT, Kavounoudias A, Micera S, Van De Ville D, Barraud Q, Kurt E, Kuster N, Neufeld E, Capogrosso M, Asboth L, Wagner FB, Bloch J, Courtine G. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med. 2022; 28: 260-271. doi: 10.1038/s41591-021-01663-5.
Sadeghi M, Ghasemi G, Karimi M. Effect of 12-Week Rebound Therapy Exercise on Static Stability of Patients With Spinal Cord Injury. J Sport Rehabil. 2019; 28: 464-467. doi: 10.1123/jsr.2017-0303.
Sale P, Russo EF, Russo M, Masiero S, Piccione F, Calabró RS, Filoni S. Effects on mobility training and de-adaptations in subjects with Spinal Cord Injury due to a Wearable Robot: a preliminary report. BMC Neurol. 2016; 28: 16: 12. doi: 10.1186/s12883-016-0536-0.
Sale P, Russo EF, Scarton A, Calabrò RS, Masiero S, Filoni S. Training for mobility with exoskeleton robot in spinal cord injury patients: a pilot study. Eur J Phys Rehabil Med. 2018; 54: 745-751. doi: 10.23736/S1973-9087.18.04819-0.
Sandhu MS, Gray E, Kocherginsky M, Jayaraman A, Mitchell GS, Rymer WZ. Prednisolone Pretreatment Enhances Intermittent Hypoxia-Induced Plasticity in Persons With Chronic Incomplete Spinal Cord Injury. Neurorehabil Neural Repair. 2019; 33: 911-921. doi: 10.1177/1545968319872992.
Santamaria V, Luna TD, Agrawal SK. Feasibility and tolerance of a robotic postural training to improve standing in a person with ambulatory spinal cord injury. Spinal Cord Ser Cases. 2021; 7: 94. doi: 10.1038/s41394-021-00454-x.
Sayenko DG, Alekhina MI, Masani K, Vette AH, Obata H, Popovic MR, Nakazawa K. Positive effect of balance training with visual feedback on standing balance abilities in people with incomplete spinal cord injury. Spinal Cord. 2010; 48: 886-93. doi: 10.1038/sc.2010.41.
Schwartz I, Sajina A, Neeb M, Fisher I, Katz-Luerer M, Meiner Z. Locomotor training using a robotic device in patients with subacute spinal cord injury. Spinal Cord. 2011; 49: 1062-7. doi: 10.1038/sc.2011.59.
Sczesny-Kaiser M, Höffken O, Aach M, Cruciger O, Grasmücke D, Meindl R, Schildhauer TA, Schwenkreis P, Tegenthoff M. HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil. 2015; 12: 68. doi: 10.1186/s12984-015-0058-9.
Sengupta M, Gupta A, Khanna M, Rashmi Krishnan UK, Chakrabarti D. Role of Virtual Reality in Balance Training in Patients with Spinal Cord Injury: A Prospective Comparative Pre-Post Study. Asian Spine J. 2020; 14: 51-58. doi: 10.31616/asj.2019.0013. Erratum in: Asian Spine J. 2020 Apr;14(2):268. doi: 10.31616/asj.2019.0013.e1.
Senthilnathan V, Punjani N, Nagoshi N, Ahuja CS, Fehlings MG. Chapter 26 – Clinical trials: Noncellular regenerative approaches. Neural Repair and Regeneration After Spinal Cord Injury and Spine Trauma. 2022: 473-500.
Shackleton C, Evans R, Shamley D, West S, Albertus Y. Effectiveness of over-ground robotic locomotor training in improving walking performance, cardiovascular demands, secondary complications and user-satisfaction in individuals with spinal cord injuries: A systematic review. J Rehabil Med. 2019; 51: 723-733. doi: 10.2340/16501977-2601.
Shahin AA, Shawky SA, Rady HM, Effat DA, Abdelrahman SK, Mohamed E, Awad R. Effect of Robotic Assisted Gait Training on functional and psychological improvement in patients with Incomplete Spinal Cord Injury. J Novel Phys and Phys Rehab. 2017; 4: 083-086.
Shin JC, Kim JY, Park HK, Kim NY. Effect of Robotic-Assisted Gait Training in Patients With Incomplete Spinal Cord Injury. Ann Rehabil Med. 2014; 38:719-725. Doi: 10.5535/arm.2014.38.6.719
Shin JC, Jeon HR, Kim D, Cho SI, Min WK, Lee JS, Oh DS, Yoo J. Effects on the Motor Function, Proprioception, Balance, and Gait Ability of the End-Effector Robot-Assisted Gait Training for Spinal Cord Injury Patients. Brain Sci. 2021; 11: 1281. doi: 10.3390/brainsci11101281.
Sibley KM, Beauchamp MK, Van Ooteghem K, Straus SE, Jaglal SB. Using the systems framework for postural control to analyze the components of balance evaluated in standardized balance measures: a scoping review. Arch Phys Med Rehabil. 2015; 96: 122-132.e29. doi: 10.1016/j.apmr.2014.06.021.
Simis M, Fregni F, Battistella LR. Transcranial direct current stimulation combined with robotic training in incomplete spinal cord injury: a randomized, sham-controlled clinical trial. Spinal Cord Ser Cases. 2021; 7: 87. doi: 10.1038/s41394-021-00448-9.
Sliwinski MM, Akselrad G, Alla V, Buan V, Kaemmerlen E. Community exercise programing and its potential influence on quality of life and functional reach for individuals with spinal cord injury. J Spinal Cord Med. 2020; 43: 358-363. doi: 10.1080/10790268.2018.1543104.
Solomonow M, Aguilar E, Reisin E, Baratta RV, Best R, Coetzee T, D’Ambrosia R. Reciprocating gait orthosis powered with electrical muscle stimulation (RGO II). Part I: Performance evaluation of 70 paraplegic patients. Orthopedics. 1997; 20: 315-24. doi: 10.3928/0147-7447-19970401-08.
Stevens SL, Caputo JL, Fuller DK, Morgan DW. Effects of underwater treadmill training on leg strength, balance, and walking performance in adults with incomplete spinal cord injury. J Spinal Cord Med. 2015; 38: 91-101. doi: 10.1179/2045772314Y.0000000217.
Stone WJ, Stevens SL, Fuller DK, Caputo JL. Strength and Step Activity After Eccentric Resistance Training in Those With Incomplete Spinal Cord Injuries. Top Spinal Cord Inj Rehabil. 2018; 24: 343-352. doi: 10.1310/sci17-00052.
Stone WJ, Stevens SL, Fuller DK, Caputo JL. Ambulation and physical function after eccentric resistance training in adults with incomplete spinal cord injury: A feasibility study. J Spinal Cord Med. 2019; 42: 526-533. doi: 10.1080/10790268.2017.1417804.
Tak S, Choi W, Lee S. Game-based virtual reality training improves sitting balance after spinal cord injury: A single-blinded, randomized controlled trial. Med. Technol. 2015; 56: 53-59. Doi:10.12659/MST.894514
Tamburella F, Scivoletto G, Molinari M. Balance training improves static stability and gait in chronic incomplete spinal cord injury subjects: a pilot study. Eur J Phys Rehabil Med. 2013; 49:353-64.
Tamburella F, Tagliamonte NL, Pisotta I, Masciullo M, Arquilla M. van Asseldonk EHF, et al. Neuromuscular Controller Embedded in a Powered Ankle Exoskeleton: Effects on Gait, Clinical Features and Subjective Perspective of Incomplete Spinal Cord Injured Subjects. IEEE Trans Neural Syst Rehabil Eng. 2020a; 28: 1157-1167. doi: 10.1109/TNSRE.2020.2984790.
Tamburella F, Tagliamonte NL, Masciullo M, Pisotta I, Arquilla M, van Asseldonk EHF, et al. Gait training with Achilles ankle exoskeleton in chronic incomplete spinal cord injury subjects. J Biol Regul Homeost Agents. 2020b; 34: 147-164.
Tamburella F, Lorusso M, Tramontano M, Fadlun S, Masciullo M, Scivoletto G. Overground robotic training effects on walking and secondary health conditions in individuals with spinal cord injury: systematic review. J Neuroeng Rehabil. 2022; 19: 27. doi: 10.1186/s12984-022-01003-9.
Tan AQ, Barth S, Trumbower RD. Acute intermittent hypoxia as a potential adjuvant to improve walking following spinal cord injury: evidence, challenges, and future directions. Curr Phys Med Rehabil Rep. 2020; 8: 188-198. doi: 10.1007/s40141-020-00270-8.
Tang Q, Huang Q, Hu C. Research on Design Theory and Compliant Control for Underactuated Lower-extremity Rehabilitation Robotic Systems code: (51175368); 2012.01-2015.12. J Phys Ther Sci. 2014; 26: 1597-9. doi: 10.1589/jpts.26.1597.
Tefertiller C, Bartelt P, Stobelaar M, Charlifue S, Sevigny M, Vande Griend E, Rozwod M. Improving upper extremity strength, function, and trunk stability using wide-pulse functional electrical stimulation in combination with functional task-specific practice. Top Spinal Cord Inj Rehabil. 2022; 28: 139-152. doi: 10.46292/sci21-00004.
Tharu NS, Alam M, Ling YT, Wong AY, Zheng YP. Combined transcutaneous electrical spinal cord stimulation and task-specific rehabilitation improves trunk and sitting functions in people with chronic tetraplegia. Biomedicines. 2022; 11: 34. doi: 10.3390/biomedicines11010034.
Thomas SL, Gorassini MA. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol. 2005; 94: 2844-55. doi: 10.1152/jn.00532.2005.
Trumbower RD, Jayaraman A, Mitchell GS, Rymer WZ. Exposure to acute intermittent hypoxia augments somatic motor function in humans with incomplete spinal cord injury. Neurorehabil Neural Repair. 2012; 26: 163-72. doi: 10.1177/1545968311412055.
Tsai CY, Asselin PK, Hong E, Knezevic S, Kornfeld SD, Harel NY, Spungen AM. Exoskeletal-assisted walking may improve seated balance in persons with chronic spinal cord injury: a pilot study. Spinal Cord Ser Cases. 2021; 7: 20. doi: 10.1038/s41394-021-00384-8.
Tsang WW, Gao KL, Chan KM, Purves S, Macfarlane DJ, Fong SS. Sitting tai chi improves the balance control and muscle strength of community-dwelling persons with spinal cord injuries: a pilot study. Evid Based Complement Alternat Med. 2015; 2015: 523852. doi: 10.1155/2015/523852.
Unger J, Chan K, Lee JW, Craven BC, Mansfield A, Alavinia M, Masani K, Musselman KE. The effect of perturbation-based balance training and conventional intensive balance training on reactive stepping ability in individuals with incomplete spinal cord injury or disease: A randomized clinical trial Front. Neurol. 2021; 12: 620367-620367. https://doi.org/10.3389/fneur.2021.620367
van Dijsseldonk RB, de Jong LAF, Groen BE, et al. Gait Stability Training in a Virtual Environment Improves Gait and Dynamic Balance Capacity in Incomplete Spinal Cord Injury Patients. Front Neurol. 2018; 9: 963. doi: 10.3389/fneur.2018.00963.
van Dijsseldonk RB, Rijken H, van Nes IJW, van de Meent H, Keijsers NLW. Predictors of exoskeleton motor learning in spinal cord injured patients. Disabil Rehabil. 2021; 43: 1982-1988. doi: 10.1080/09638288.2019.1689578.
van Hedel HJ, Dietz V. Rehabilitation of locomotion after spinal cord injury. Restor Neurol Neurosci. 2010; 28: 123-34. doi: 10.3233/RNN-2010-0508.
Varoqui D, Niu X, Mirbagheri MM. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury. J Neuroeng Rehabil. 2014; 11: 46. doi: 10.1186/1743-0003-11-46.
Villiger M, Bohli D, Kiper D, Pyk P, Spillmann J, Meilick B, Curt A, Hepp-Reymond MC, Hotz-Boendermaker S, Eng K. Virtual reality-augmented neurorehabilitation improves motor function and reduces neuropathic pain in patients with incomplete spinal cord injury. Neurorehabil Neural Repair. 2013; 27: 675-83. doi: 10.1177/1545968313490999.
Villiger M, Grabher P, Hepp-Reymond MC, Kiper D, Curt A, Bolliger M, Hotz-Boendermaker S, Kollias S, Eng K, Freund P. Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: a longitudinal pilot study. Front Hum Neurosci. 2015; 9: 254. doi: 10.3389/fnhum.2015.00254.
Villiger M, Liviero J, Awai L, Stoop R, Pyk P, Clijsen R, Curt A, Eng K, Bolliger M. Home-Based Virtual Reality-Augmented Training Improves Lower Limb Muscle Strength, Balance, and Functional Mobility following Chronic Incomplete Spinal Cord Injury. Front. Neurol. 2017; 8.
Walia S, Kumar P, Kataria C. Interventions to Improve Standing Balance in Individuals With Incomplete Spinal Cord Injury: A Systematic Review and Meta-Analysis. Top Spinal Cord Inj Rehabil. 2023; 29: 56-83. doi: 10.46292/sci21-00065.
Wall T, Feinn R, Chui K, Cheng MS. The effects of the Nintendo™ Wii Fit on gait, balance, and quality of life in individuals with incomplete spinal cord injury. J Spinal Cord Med. 2015; 38: 777-83. doi: 10.1179/2045772314Y.0000000296.
Wang L, Zhang H, Ai H, Liu Y. Effects of virtual reality rehabilitation after spinal cord injury: a systematic review and meta-analysis. J Neuroeng Rehabil. 2024; 21: 191. doi: 10.1186/s12984-024-01492-w.
Weber DJ, Stein RB, Chan KM, Loeb GE, Richmond FJ, Rolf R, James K, Chong SL, Thompson AK, Misiaszek J. Functional electrical stimulation using microstimulators to correct foot drop: a case study. Can J Physiol Pharmacol. 2004; 82: 784-92. doi: 10.1139/y04-078.
Wessels M, Lucas C, Eriks I, de Groot S. Body weight-supported gait training for restoration of walking in people with an incomplete spinal cord injury: a systematic review. J Rehabil Med. 2010; 42: 513-9. doi: 10.2340/16501977-0525.
Williams AMM, Chisholm AE, Lynn A, Malik RN, Eginyan G, Lam T. Arm crank ergometer “spin” training improves seated balance and aerobic capacity in people with spinal cord injury. Scand J Med Sci Sports. 2020; 30: 361-369. doi: 10.1111/sms.13580.
Winchester P, McColl R, Querry R, Foreman N, Mosby J, Tansey K, Williamson J. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair. 2005; 19: 313-24. doi: 10.1177/1545968305281515.
Wirz M, Mach O, Maier D, Benito-Penalva J, Taylor J, Esclarin A, Dietz V. Effectiveness of Automated Locomotor Training in Patients with Acute Incomplete Spinal Cord Injury: A Randomized, Controlled, Multicenter Trial. J Neurotrauma. 2017; 34: 1891-1896. doi: 10.1089/neu.2016.4643.
Wu M, Landry JM, Schmit BD, Hornby TG, Yen SC. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2012; 93: 782-9. doi: 10.1016/j.apmr.2011.12.018.
Wu M, Landry JM, Kim J, Schmit BD, Yen SC, McDonald J, Zhang Y. Repeat Exposure to Leg Swing Perturbations During Treadmill Training Induces Long-Term Retention of Increased Step Length in Human SCI: A Pilot Randomized Controlled Study. Am J Phys Med Rehabil. 2016; 95: 911-920. doi: 10.1097/PHM.0000000000000517.
Wu M, Kim J, Gaebler-Spira DJ, Schmit BD, Arora P. Robotic Resistance Treadmill Training Improves Locomotor Function in Children With Cerebral Palsy: A Randomized Controlled Pilot Study. Arch Phys Med Rehabil. 2017; 98: 2126-2133. doi: 10.1016/j.apmr.2017.04.022.
Wu M, Kim J, Wei F. Facilitating Weight Shifting During Treadmill Training Improves Walking Function in Humans With Spinal Cord Injury: A Randomized Controlled Pilot Study. Am J Med Rehabil. 2018; 97: 585-592. doi: 10.1097/PHM.0000000000000927.
Yang JF, Norton J, Nevett-Duchcherer J, Roy FD, Gross DP, Gorassini MA. Volitional muscle strength in the legs predicts changes in walking speed following locomotor training in people with chronic spinal cord injury. Phys Ther. 2011; 91: 931-43. doi: 10.2522/ptj.20100163.
Yang JF, Musselman KE, Livingstone D, Brunton K, Hendricks G, Hill D, Gorassini M. Repetitive mass practice or focused precise practice for retraining walking after incomplete spinal cord injury? A pilot randomized clinical trial. Neurorehabil Neural Repair 2014; 28: 314-324.
Yeo E, Chau B, Bradley C, Ruckle DE, Ta P. Virtual Reality Neurorehabilitation for Mobility in Spinal Cord Injury: A Structured Review. Innov Clin Neurosci. 2019; 16: 13-20.
Yip CCH, Lam CY, Cheung KMC, Wong YW, Koljonen PA. Knowledge Gaps in Biophysical Changes After Powered Robotic Exoskeleton Walking by Individuals With Spinal Cord Injury-A Scoping Review. Front Neurol. 2022; 13: 792295. doi: 10.3389/fneur.2022.792295.
Yu P, Zhang W, Liu Y, Sheng C, So K-F, Zhou L, Zhu H. The effects and potential mechanisms of locomotor training on improvements of functional recovery after spinal cord injury. Int Rev Neurobiol. 2019; 147: 199-217. doi: 10.1016/bs.irn.2019.08.003.
Zeng D, Zhao K, Lei W, Yu Y, Li W, Kong Y, Lai J, Ma F, Ye X, Zhang X. Effects of whole-body vibration training on physical function, activities of daily living, and quality of life in patients with stroke: a systematic review and meta-analysis. Front Physiol. 2024; 15: 1295776. doi: 10.3389/fphys.2024.1295776.
Zhang L, Lin F, Sun L, Chen C. Comparison of Efficacy of Lokomat and Wearable Exoskeleton-Assisted Gait Training in People With Spinal Cord Injury: A Systematic Review and Network Meta-Analysis. Front. Neurol. 2022: 13. https://doi.org/10.3389/fneur.2022.772660