AA

Girdle/Abdominal Binder

Download as a PDF

Abdominal binders are used to prevent the abdominal contents from falling forward in order to maintain abdominal pressure in upright subjects with SCI. The increase in abdominal pressure is considered to position the diaphragm at a longer dome-shaped length and hence, improve inspiratory function.  Abdominal binders are most commonly used in subjects with loss of abdominal wall strength (generally lesions above T6). Some early work (primarily level 4 studies) looking at the effects of abdominal binders on respiratory function in SCI was done prior to 1980 but was not included in this review. Studies on the effects of abdominal binders need to include positioning information as position greatly influences lung volumes in tetraplegia.

In addition to being used as a respiratory intervention, abdominal binders are used as an intervention in subjects with postural hypotension (see the Orthostatic Hypotension chapter).

Table 12: Abdominal Binding

Discussion

Well-designed studies demonstrate that abdominal binders in people with tetraplegia significantly increase IC or VC, and decrease FRC in all positions (McCool et al. 1986; Estenne et al. 1998; Hart et al. 2005; Prigent 2010; Julia et al. 2011; West et al. 2012; Wadsworth et al. 2012). One randomized cross-over design of long term use (Wadsworth et al. 2012) showed that abdominal binding significantly improved spirometry and inspiratory muscle strength. One study examining a small sample (n=10) showed that a custom girdle reduces the sensation of respiratory effort as measured by the Borg Rating of Perceived Exertion (Hart et al. 2005). Abdominal binding can improve PEFR (Wadsworth et al. 2012; West et al. 2012; Julia et al. 2011) but its relevance to an improved cough has been questioned enhance cough (Estenne et al. 1998).  Worthy of further study, the diaphragmatic pressure-time product increases after abdominal binding may represent enhanced diaphragmatic force production but it is not known if this change translates to an improved efficiency of breathing and decreased work of breathing.

Interventions to increase abdominal pressure and decrease the laxity of abdominal chest wall, which in turn affects diaphragm length and position, have been used in other patient groups. Abdominal binding for people with SCI should be introduced cautiously and be rigorously assessed because of the potential for alteration of diaphragm length to result in mechanical inefficiency, increased dyspnea, and inspiratory muscle fatigue. The design of the abdominal binder may influence the impact of the abdominal binder (Julia et al. 2011).

One study has shown intermediate or long-term effects of abdominal binding on people with SCI (C4-T1). Positioning and using other interventions that increase abdominal pressure in other chronic respiratory conditions improve diaphragm force production but also can induce diaphragm fatigue and have variable influence on dyspnea reduction. The clinical outcomes of abdominal binding should be carefully evaluated for each individual. Abdominal binding could potentially have positive or deleterious effects on inspiratory muscle efficiency and dyspnea in different people after SCI.

Conclusions

There is level 2 evidence evidence (Wadsworth et al. 2012) that abdominal binding in tetraplegic individuals can improve respiratory function, and longer term use can continue to be effective.

  • Abdominal binding can be used to achieve immediate improvements in respiratory function, but long term effects have not been established.