Nutrition Counseling

Cardiovascular Disease (CVD) appears prematurely in persons with SCI. It is the most frequent cause of death among persons surviving more than 30 years following injury and accounts for 45% of all SCI deaths (Devivo et al. 1999). Abnormalities in lipid metabolism develop shortly after injury and tend to progress over time (Bauman et al. 1992; Brenes et al. 1986; Kocina 1997; Szlachcic et al. 2001). Despite the high risk for CVD morbidity and mortality in individuals with SCI, few studies have addressed the benefits of risk reduction interventions aimed at modifiable factors and those that exist have been limited to exercise interventions. This section discusses what is known about the value of nutrition counseling in improving dyslipidemia in persons with SCI.


Sabour et al. (2018) conducted a high-level RCT to examine the efficacy of a nutritional education program on SCI patients’ body lipid profile and body weight. There was no significant difference in lipid profile levels (total cholesterol (p=0.224), triglyceride (p=0.172), low density lipoprotein cholesterol (p=0.107) high-density lipoprotein cholesterol (p=0.081) when comparing the intervention group receiving the nutritional education to the control group. Furthermore, there were no significant weight or waist circumflex changes between the two groups. Thus, study authors concluded that the nutritional education program alone was not adequately effective to have a beneficial influence on weight and lipid profile in patients post-SCI. The authors comment on the short duration of the seven-month study as being a potential factor for the insignificant results, as well as the small sample size of 57 participants. This study did not take into consideration caregiver involvement in eating for the patients studied. Persons with SCI are substantially limited in mobility, and thus caregivers play a large role for feeding (Sabour et al. 2018), which was not evaluated in this study, but may have changed the outcomes.

Szlachcic et al. (2001) evaluated the effects of dietary education for individuals with SCI at least two years post-injury who had moderately elevated total cholesterol levels (>5.2mmol/L) and reported significant decreases in total and low-density lipoprotein cholesterol (LDLC). Individuals who were assessed at baseline as having total cholesterol values >5.2 mmol/L (200 mg/dL) were referred to the staff registered dietitian for counseling. Specifically, individuals were advised to limit daily fat intake to <30% of total daily calories (kcal), daily saturated fat intake to<10% of daily calories, daily cholesterol intake to<300 mg and to consume 60% of total daily calories as carbohydrate. Subjects in the treatment group were seen by a dietitian at least twice to assess their dietary compliance. The remaining 136 subjects (control group) did not receive nutrition consultation. Subjects in the treatment group were significantly older and were a greater number of years post injury than those in the control group; therefore, changes in lipid profile were analyzed controlling for differences in age and duration post-injury. A greater number of individuals in the treatment group demonstrated a significant decrease in TC (69%) compared to the control group (43%). These declines were also demonstrated for LDL in the treatment and control group (67% versus 47%, respectively). There were no significant changes in HDL for either group although one third of all subjects in both groups had HDL values below the recommended range at baseline. Finally, 60% of the treatment group and 45% of control group had declines in triglycerides levels.

In a cross-sectional, observational study bu Kourtrakis et al. (2018), 174 chronic SCI patients were studied to determine dietary, lifestyle and clinical factors associated with plasma 25-hydroxyvitamin D [25(PH)D] levels. Answers from the food frequency questionnaire (FFQ) were converted to daily intake of various nutrients. Independent factors positively associated with higher plasma 25(OH)D included vitamin D intake, age, hours of planned exercise, female sex, white race, wine consumption, and if a never or former smoker. The most important predictor of 25(OH)D was supplement intake. The majority of subjects (98.9% for vitamin D and 74.1% for calcium) did not meet the recommended daily allowance for adults from their diet alone. Level and completeness of SCI, injury duration, mobility, % total body fat, time outside, and comorbid diseases were not associated with plasma 25(OH)D (Kourtrakis et al. 2018). It was concluded that plasma 25(OH)D level in chronic SCI patients is not associated with clinical factors specific to SCI such as injury level and completeness, injury duration, and mobility mode, but related to supplement intake and other lifestyle factors.

Javidan et al. (2017) evaluated the probable effect of dietary amino acid intake patterns on serum lipid profiles and BP in chronic SCI participants. Dietary intakes were assessed by recording consumed foods by 24-hour dietary recall interviews. Dietary intake of lysine was positively related to levels of fasting plasma glucose (FPG), triglyceride (TG), systolic blood pressure (SBP) and diastolic blood pressure (DBP) (p<0.0001, 0.046, 0.002 and 0.009, respectively). There was a positive significant relationship between the intake of cysteine and levels of TG and SBP as well (p= 0.027 and 0.048, respectively). Higher intakes of threonine and leucine had a negative relationship with TG level (p=0.001 and 0.026, respectively). Furthermore, tyrosine, threonine and leucine were inversely correlated to blood pressure. Total cholesterol level was only related to intake of threonine and leucine (p=0.004 and 0.012, respectively). FPG was positively associated with intake of all amino acids except for cysteine, glutamic acid, threonine, leucine and histidine.


There is level 1b evidence (from one RCT: Sabour et al. 2018) that a nutritional education program alone does not influence body weight or lipid profile compared to a control group.

There is level 2 evidence (from one prospective controlled trial: Szlachic et al. 2001) that standard dietary counseling (total fat<30% of kcal, saturated fat<10% of kcal, cholesterol<300 mg, carbohydrate 60% of kcal) can reduce total and low density lipoprotein cholesterol among individuals with SCI who have total initial cholesterol >5.2 mmol/L.

There is level 5 evidence (from one observational study: Kourtrakis et al. 2018) that plasma 25(OH)D level in chronic SCI patients is not associated with clinical factors specific to SCI.

There is level 5 evidence (from one observational study: Javidan et al. 2017) that dietary intake of lysine may positively relate to levels of FPG, TG, SBP and DBP); intake of cysteine may positively relate to levels of TG and SBP; higher intakes of threonine and leucine may have a negative relationship with TG level; tyrosine, threonine and leucine may be inversely correlated to BP. However, these correlations may be due to an increase in total calories.