Last updated: December 31, 2024 ## Research Summary - Walking Index for Spinal Cord Injury (WISCI) - Lower Limb and Walking | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|---|-------------|------------------------------------| | | N = 30 (5F) | Moderate to high | | | | Sato et al. 2023 | | correlation coefficient | | | | <u> </u> | Mean age: 63.8 ±10.7 | between the trunk | | | | Japan | years, | assessment scale for | | | | Заран | Tetraplegia = 17 | spinal cord injury | | | | Validity Study | | (TASS) and the WISCI | | | | | 6 AIS A, 0 AIS B, 8 AIS | II (r=0.67 (0.41-0.83)) | | | | Rehabilitation | C, 16 AIS D. | | | | | hospital | Time im im in 11 (2) | Construct validity for | | | | · | Time since injury 1142 | WISCI II with trunk | | | | | ±1720.7 days | control test (TCT-SCI)
was r= 0.42 (0.14-0.71) | | | | Sinovas-Alonso | isci | Self-selected WISCI II | | | | et al. 2023 | N= 35 (24M) | levels showed good | | | | et al. 2025 | Mean age: 35.5(17.2) | correlation with the | | | | Spain | Wedirage. 33.3(17.2) | spinal cord injury gait | | | | | Non-SCI | deviation index (SCI- | | | | Observational, | N = 50 (19M) | GDI) (r=0.521) | | | | cross-sectional | Mean age: 34.6 (15.2) | , , , | | | | | | Maximum WISCI II | | | | Biomechanics | | levels had no | | | | and Technical | | significant correlations | | | | Aids Unit of the | | with the SCI-GDI | | | | National | | (p=0.013) | | | | Hospital for | | | | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |--|--|--|-------------|------------------------------------| | Paraplegics of Toledo, Spain | | | | | | Willi et al. 2023 Switzerland Multicenter- observational study | N=50 Age range: 18-79 (52.6 ±16.2 years) Tetraplegic = 24 Paraplegic = 26; 2 AIS A, 0 AIS B, 7 AIS C, 41 AIS D Years since injury = 6.11 ± 9.8 | Construct validity: Moderate relationship with the 2MWT, r=0.571 (0.356-0.784) | | | | Kahn et al. 2020
USA | N= 12 (11M, 1F) Mean age: 55.41± 11.65 years (32-73) Chronic motor SCI 2 AIS C, 10 AIS D Level of injury: 7 cervical, 5 thoracic | Convergent validity: For the WISCI II with the functional gait assessment (FGA) was high (spearman's rho= 0.74, p=0.006) | | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|----------|--|---| | | Years since injury = 1.7 to 29.7 (7.8 ± 7.8) | | | | | Calhoun et al. | N=52 (22M, 30F)
Age range: (2-17) | | Intra-rater reliability
ICC=0.997, CI=0.995-
0.998 | | | <u>2017</u>
USA | Tetraplegic=14 Paraplegic=38 AIS: 3A, 3B, 9C, 16D, | | Inter-rater reliability
ICC=0.97, CI=0.95-
0.98 | | | Mixed methods | 21Unknown Neurological level: 5 C1-C4, 2 C5-C8, 24 T1- S5, 21 Unknown | | | | | Scivoletto et al.
2014 | N=33 (28M, 5F)
Mean age: 44 years | | Intra-rater reliability
=0.975-0.999 | Responsiveness: No data available | | Test-Retest
analysis,
calculation of | AIS: 33D
32 AIS-D, 1 AIS-C | | Maximum WISCI II
entire group:
ICC=0.996 | Floor/Ceiling Effect: No data available Interpretability | | reliability and
smallest real
difference (SRD) | Injury level: 20
cervical, 8 thoracic, 5
lumbar | | Maximum WISCI II
Tetraplegics (n=20):
ICC=0.994 | SEM (WISCI II) for
tetraplegics = 0.401
(N=20); for paraplegics | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|--|---|--| | SCI unit of a rehabilitation hospital | Median time since
SCI onset = 40 days | | Maximum WISCI II
Paraplegics
(n=13):ICC=0.992 | = 0.437 (N=13); for both groups = 0.318. | | | Incomplete SCI, subacute and chronic | | | MDC for tetraplegics =
1.147 (N=20); for
paraplegics = 1.682
(N=13); for both
groups = 0.883 | | Tamburella et al. | N=23 (14M) | | Intra-rater
ICC = 0.95, p<0.005 | Responsiveness: ES = 0.07 | | 2014 Serial cross- | Mean age 48.27
SD = 15.94 | | | Floor/Ceiling Effect:
No data available | | sectional study | Mean time since
injury = 16.43 months,
SD = 19.03 | | | Interpretability: SEM
= 0.73, MDC95 = 0.02,
%MDC = 13.0 | | Ovechkin et al.
2013 | N = 11 (3F, 8M)
Age: 48±19 | AIS: Spearman rho = 0.71 (p< 0.05) | | | | USA
Prospective | AIS A: 4
AIS C: 1
AIS D: 6 | FIM motor score:
Spearman rho =0.69
(p< 0.01) | | | | cohort study | | SCIM total score:
Spearman rho = 0.74
(p<0.01) | | | | Author Year Country Research Design Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|---|---|--|------------------------------------| | University of
Louisville | | SCIM mobility score:
Spearman rho =0.84
(p<0.01) | | | | Calhoun et al.
2012
USA | N=10 (8M, 2F) Age range: 5-13 years Incomplete: 7 | Correlation between
WISCI II and SCIM
indoor mobility item:
r=0.96 | Intra-rater
reliability: ICC=0.98,
CI=0.95-0.99
Inter-rater | | | Pilot study Shriners Hospitals for Children, Clinical Research Department | Complete: 7 Complete: 3 AIS Score: 3 A, 1 B, 1 C, 5 D | | reliability: ICC=0.97,
CI=0.96-0.99 | | | USA Test-retest for some participants | N=76 (60M, 16F) Mean age = 43.4±13.8 Mean years from injury = 6.32±5.99 Chronic SCI 45% Paraplegia 55% Tetraplegia | To assess convergent validity for both self-selected and maximum WISCI levels and walking speeds, their relationships with LEMS, UEMS, and MMT were assessed. | ICC for WISCI: SS WISCI – level: 0.994 SS WISCI – speed: 0.930 Max WISCI – level: 0.995 | Please see table below. | | Regional Spinal Cord Injury Center of the Delaware Valley and Magee Rehabilitation Hospital, Philadelphia, PA The distribution of Als grades was A (3%), B (1%), C (8%), and D (88%), which reflects that participants had to ambulate a minimum of 10 m to be assigned a WISCI level and participate. For both maximum WISCI and self- selected WISCI, the strongest correlations were with LEMS: p=0.717 and p=0.704, respectively. There were profound differences when the composite cohort was split into tetraplegic (n=42) and paraplegic (n=42) and paraplegic (n=34) cohorts. For tetraplegic participants, there were also significant correlations between WISCI levels and UEMS: p=0.496 (self-selected) p=0.502 (maximum) | Author Year Country Research Design Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |--|--|---|---|-------------|------------------------------------| | correlations: | Cord Injury Center of the Delaware Valley and Magee Rehabilitation Hospital, | 32% motor vehicle accidents 26% falls 13% sports/diving incidents 11% acts of violence 18% other The distribution of AIS grades was A (3%), B (1%), C (8%), and D (88%), which reflects that participants had to ambulate a minimum of 10 m to be assigned a WISCI | WISCI and self-selected WISCI, the strongest correlations were with LEMS: p=0.717 and p=0.704, respectively. There were profound differences when the composite cohort was split into tetraplegic (n=42) and paraplegic (n=34) cohorts. For tetraplegic participants, there were also significant correlations between WISCI levels and UEMS: p=0.496 (self-selected) p=0.502 (maximum) | • | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|---|-------------|------------------------------------| | | | Btwn Self-selected WISCI level and: 1. ASIA UEMS (tetraplegic only, N=41): 0.496 (p<0.0001) 2. ASIA LEMS (N=76): 0.704 (p<0.0001) 3. Manual Muscle Test (Upper & Lower Extremity) (N=75): 0.647 (p<0.0001) | | | | | | Btwn Self-selected WISCI speed and: 4. ASIA UEMS (tetraplegic only, N=41): 0.491 (p<0.05) 5. ASIA LEMS (N=76): 0.509 (p<0.05) 6. Manual Muscle Test (Upper & Lower Extremity) (N=75): 0.494 (p<0.0001) | | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|---|-------------|------------------------------------| | | | Btwn Max WISCI level: 7. ASIA UEMS (tetraplegic only, N=41): 0.502 (p<0.0001) 8. ASIA LEMS (N=76): 0.717 (p<0.0001) 9. Manual Muscle Test (Upper & Lower Extremity) (N=75): 0.663 (p<0.0001) | | | | | | Btwn Max WISCI speed: 10. ASIA UEMS | | | | Author Year
Country
Research
Design
Setting | Demographi
Injury
Characterist
Sample | ics of | Validit | y | Reliabilit | у | Responsiveness
Interpretability | |---|--|------------|--|--|------------|---|------------------------------------| | | SRD for WISC | | More details of paraplegic/tet values available article. When the enticohort was an walking speed correlated significantly walking the MMT, LEMS, and wiscl (maximand self-select | raplegic
le in
ire
alyzed,
l
rith
nd
um and | | | | | | Speed | or Level a | na waiking | | | | | | | • | | SEM | SRD | | | | | | SS WISCI | Level | 0.283 | 0.785 | | | | | | | Speed | 0.091 | 0.254 m/ | S | | | | | Max WISCI | Level | 0.215 | 0.597 | | | | | | | Speed | 0.059 | 0.163 m/s | 5 | | | | | WISCI = Walk
SS = Self-Sele
Max = Maxim | cted | for Spinal Cord | Injury | | | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |--|--|--|-------------|--| | | SEM = Standard Error of SRD = Smallest Real Di | | | • | | | N = 32 SCI (25M, 7F) Mean age: 47.9± 12.8 yrs | Spearman's correlations with other walking scales: 1. (all P<0.01) | | Responsiveness: No data available Ceiling effect = 44.8% (44.8% of subjects | | Lemay &
Nadeau, 2010
Canada | Neurological level: 15
paraplegic, 17
tetraplegic | BBS: 0.816 SCI-FAI parameter: 0.761 SCI-FAI assistive devices: 0.980 | | reached maximal score on the scale) | | Longitudinal An intensive rehabilitation center in Montreal, | Level of injury: 17
cervical, 10 thoracic, 5
lumbar
Type of injury: 21
traumatic, 11 non-
traumatic | 5. SCI-FAI mobility: 0.6306. 2MWT: 0.7497. 10MWT: 0.7958. TUG: -0.799 | | Interpretability: No
data available | | Canada (Institut
de readaptation
Gingras-Lindsay
de Montreal) | Inclusion criteria: (1) Adults with SCI AIS D either of traumatic or nontraumatic etiology and (2) the ability to walk 10m independently with or without | | | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |--|--|----------|--|------------------------------------| | | upper-extremity assistive devices. | | | | | Marino et al. | N=26 (9 US, 17 Italy)
(16M, 10F) | | Intra-rater reliability
(self-selected (SS),
maximum) ICC=1.00 | | | 2010
USA | Mean age: 46.4 <u>+</u> 19.3
years | | Interrater reliability:
ICC=1.00 (self
selected WISCI) | | | Reliability study | Time post-injury: 8-336
months, mean: 58
months | | ICC=0.98 (maximum
WISCI) | | | Regional Spinal
Cord Injury
Center of the
Delaware Valley | Traumatic SCI = 18
Spinal cord lesions = 8 | | | | | And the the
Spinal Unit | Neurological levels: 7
cervical, 11 thoracic, 8
lumbar | | | | | | AIS: 23D, 2A, 1C | | | | | Marino et al. 2010 USA/Italy | N = 26 SCI (16M, 10F; 9
from USA, 17 from
Italy) | | Intraclass correlation: coefficients for intrarater reliability were 1.00 for self- selected and | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|----------|---|------------------------------------| | Study subjects were recruited from (1) the Regional Spinal Cord Injury Center of the Delaware Valley, a partnership of Thomas Jefferson University Hospital and Magee Rehabilitation Hospital, Philadelphia, PA, and (2) the Spinal Unit, IRCCS Santa Lucia, Rome, Italy. | Mean age: 46.4±19.3 yrs Neurological levels: 7 cervical, 11 thoracic, 8 lumbar AIS A: 2 AIS C: 1 AIS D: 23 | | maximum WISCI levels for both therapists. Interrater reliability: was 1.00 for self-selected WISCI and 0.98 for maximum WISCI. Bland-Altman plots for differences in time show that the time for the 10-m walk at SS WISCI varied more from 1 day to the next than between raters on the same day. The difference in time for the two walks on the same day (interrater) was within 25% of the average time in all cases, whereas the difference in time | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |--|---|---|---|--| | | N = 42 (33M, 9F) | WISCI II correlation with: | from days 1 to 2 (intrarater) exceeded 25% of average time on several occasions. There was more variability in times for the maximum WISCI than the SS WISCI for both days and raters | Responsivness: No data available | | Wirz et al. 2010 Switzerland Prospective study Spinal Cord Injury Center of the Balgrist University Hospital, Zurich, Switzerland | Mean age: 49.3±11.5 Mean time since injury (SD) = 66.5 months (66.2) AIS A: 2 AIS B: 2 AIS C: 35 AIS D: 3 Inclusion criteria: Received either inpatient rehabilitation or outpatient physiotherapy | Berg Balance: r=.82 (P<.001) Falls total: r=03 (P=.84) SCIM mobility score: r= .81 (P<.001) 10MWT: r=.81 (P<.001) FES-I: r=71 (P<.001) Motor scores: r=.66 (P<.001) | | Floor/Ceiling Effect: No data available Interpretability: WISCI mean (SD) score: 16.9 (3.4) Median (range): 18.5 (11-20) | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|---|--|-------------|------------------------------------| | Ditunno et al. 2008 Denmark, Germany, Italy, USA | between January 1998
and September 2007.
Experienced an SCI at
least 1 year prior to
enrollment. Able to
walk for a minimum
distance of 15 m
N=150 (USA = 112;
Europe = 38) AIS A: Tetra = 18, Para =
41
AIS B: Tetra = 12, Para =
7
AIS C: Tetra = 22, Para
= 10
AIS D: Tetra = 32, Para
= 8 | Monotonic Directional Improvement (MDI) 77 participants showed improvement, 62/77 participants demonstrated MDI. 10/15 participants failed to show MDI because a walking | | | | Prospective
cohort | | device was removed too early. Total Group Spearman correlation w/Lower Extremity Motor Score (LEMS): Initial = 0.47 [P < 0.001] Final = 0.91 [P < 0.001] | | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|---|-------------|------------------------------------| | | | Improvement = 0.59 [P < 0.0001] Final for those who progressed = 0.71 [P < 0.001] | | | | | | USA Group Spearman correlation w/LEMS: Initial = 0.39 [P < 0.001] Final = 0.91 [P < 0.001] Improvement = 0.54 [P < 0.001] Final for those who progressed = 0.79 [P < 0.001] | | | | | | European Group
Spearman correlation
w/LEMS:
Initial = 0.62 [P < 0.001]
Final = 0.89 [P < 0.001]
Improvement = 0.79
[P < 0.001]
Final for those who
progressed = 0.42 [P =
0.118] | | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|--|-------------|------------------------------------| | | | Total Group Spearman correlation w/Locomotor Functional Independence Measure (LFIM): Initial = 0.89 [P < 0.001] Final = 0.76 [P < 0.001] Final for those who progressed = 0.78 [P < 0.001] | | | | | | USA Group Spearman correlation w/LFIM: Initial = 0.89 [P < 0.001] Final = 0.79 [P < 0.001] Final for those who progressed = 0.84 [P < 0.001] | | | | | | European Group
Spearman correlation
w/LFIM:
Final = 0.72 [P < 0.004] | | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|--|-------------|--| | | | Final for those who progressed = 0.72 [P = 0.004] | | | | A subcommittee of international experts evaluated locomotion measures | N= 54 expert raters | Content Validity: Expert Evaluations (54 votes): Valid or Useful: 52% Useful but requires validation: 43% Not useful or valid for research: 6% | | | | Ditunno et al.
2007 | N = 146 (114M, 32F)
Mean age: 32 (16-69) | Correlation with Berg
Balance Scale (BBS):
r=0.90 | | Responsiveness: No data available | | USA Single-blinded, paralleled- group, | Level of Injury:
58 cervical, 18 thoracic,
24 lumbar
AIS: 36B, 90C, 20D | Correlation with
Lower Extremity
Motor Score (LEMS):
r=0.85 | | Interpretability:
N=142
Mean WISCI (0-20)
score: 1.49 | | prospective
multicenter RCT
clinical trial | Incomplete spinal cord injury patients who had a Functional Independence Measure locomotor | Correlation with FIM locomotor score (LFIM): r=0.89 | | Floor/ceiling effect
At 6 months, the
walking speed | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|--|-------------|--| | 6 regional SCI inpatient rehabilitation centers | score for walking of < 4 on entry | Correlation with Functional Independence Measure: r=0.77 Correlation with 50-foot walking speed (50FW-S): r=0.85 Correlation with 6-minute walking distance (6MW-D): r=0.79 Spearman correlation w/LEMS [all P < 0.001] At 3 months: r = 0.85 At 6 months: r = 0.85 At 12 months: r = 0.88 Spearman correlation w/6-Minute Walk Test [all P < 0.001] At 3 months: r = 0.76 | | showed a linear trend to the point of 1 – 1.5 meters/second, and subsequently, a ceiling effect on the WISCI, with walking speed continuing to improve after the WISCI was at or near its maximum value. | | | | At 6 months: r = 0.68
At 12 months: r = 0.69 | | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|---|-------------|------------------------------------| | | | Spearman correlation w/50-foot Walking Speed [all P < 0.001] | | | | | | At 3 months: r = 0.78 | | | | | | At 6 months: r = 0.85 | | | | | | At 12 months: r = 0.77 | | | | | | Spearman correlation | | | | | | w/Berg Balance Scale
(BBS) [all P < 0.001] | | | | | | At 3 months: r = 0.91 | | | | | | At 6 months: r = 0.89 | | | | | | At 12 months: r = 0.92 | | | | | | Spearman correlation w/6-Minute Walk Test [all P < 0.001] | | | | | | At 3 months: r = 0.76 | | | | | | At 6 months: r = 0.68 | | | | | | At 12 months: r = 0.69 | | | | | | Spearman correlation
w/50-foot Walking
Speed [all P < 0.001]
At 3 months: r = 0.78 | | | | | | At 6 months: r = 0.85 | | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|--|-------------|------------------------------------| | | | At 12 months: r = 0.77 | | | | | | Spearman correlation w/Functional Independence Measure (FIM) [all P < 0.001] | | | | | | At 3 months: r = 0.73 | | | | | | At 6 months: r = 0.77 | | | | | | At 12 months: r = 0.74 | | | | | | Spearman correlation
w/FIM locomotor
score [all P < 0.001]
At 3 months: r = 0.92
At 6 months: r = 0.89
At 12 months: r = 0.88 | | | | | | Predictors of the
WISCI at 12 months
(Spearman's rho) | | | | | | Baseline:
LEMS = 0.73 | | | | | | BBS = 0.47
FIM Locomotor = 0.30 | | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|------------------------------------|-------------|--| | | | FIM = 0.12 3 Months: | | | | | | LEMS = 0.81 | | | | | | BBS = 0.84 | | | | | | FIM Locomotor = 0.79 | | | | | | FIM = 0.63 | | | | | | Speed = 0.71 | | | | | | Distance = 0.77 | | | | | | 6 Months: | | | | | | LEMS = 0.86 | | | | | | BBS = 0.89 | | | | | | FIM Locomotor = 0.85
FIM = 0.69 | | | | | | Speed = 0.81 | | | | | | Distance = 0.80 | | | | Kim et al. 2007 | N = 50 (86%M) | | | Reponsiveness: No data available | | Prospective | Mean age: 47.4 +- 13.2 | | | | | cohort | Ambulatory subjects | | | Floor/ceiling effect: | | | Ambulatory subjects with traumatic | | | Ceiling effect: 48% (24/50) subjects at | | Academic
medical center. | incomplete SCI | | | greater than 1 year
post injury has WISCI | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |--|--|----------|-------------|--| | | | | | =20 at entry into the study. | | | | | | Interpretability: No data available | | Musselman,
2007 | N = 19 | | | 1. MCID: 0.06 m/s | | Canada | Incomplete SCI Mean age = 42 | | | 2. SEM: 0.05 m/s
3. Effect Size: 0.46 | | Determining clinical significance via distribution- based and anchor-based approaches | Time since injury range = 0.6-28.2 years Mean = 6.97 years | | | 3. Effect 3/2c. 0.40 | | Center for Ambulatory Rehabilitation, Research, and Education at the University of Alberta | | | | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |--|--|---|-------------|--| | Van Hedel et al. 2006 Europe Longitudinal study; analyzed at 1, 3, 6, and 12 months after injury European Multicenter Study of Human Spinal Cord Injury | N = 22 (18M, 4F) Mean age = 45.5±16.7 years (range 17 – 78 years) Incomplete spinal cord injury patients who were able to stand or walk within the first month after SCI. Level of Injury: Cervical =13; Thoracic = 1; Lumbar = 7; Sacral = 1 | Spearman correlation w/Lower Extremity Motor Score Within 1 month: r = 0.49 [P=.02] After 3 months: r = 0.50 [P=.02] After 6 months: r = 0.38 [P=.08] After 12 months: r = 0.32 [P=.15] Spearman correlation w/6-Minute Walk Test Within 1 month: r = 0.78 [P<.001] After 3 months: r = 0.28 [P=.20] After 6 months: r = 0.36 [P=.10] After 12 months: r = 0.36 [P=.10] Spearman correlation w/10-Meter Walk Test Within 1 month: r = -0.79 [P<.001] | | Responsiveness: 4 time intervals: 1) within first month; 2) after 3 months 3) after 6 months; 4) after 12 months: Friedman's test (α = 0.05) between 4 intervals: DF = 3, F _r = 28.7, P < 0.001 Pair-wise comparisons via Wilcoxon's signed rank test: Between intervals 1 and 2: P = 0.005 Between intervals 2 and 3: P = 0.18 Between intervals 3 and 4: P = 0.31 | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|--|--|--| | | | After 3 months: r = -
0.21 [P=.35]
After 6 months: r = -
0.37 [P=.09]
After 12 months: r = -
0.37 [P=.09] | | Ceiling effect: All but one of the iSCI subjects qualified up to the max WISCI II score of 20 Interpretability: WISCI II mean (SD) score: Within 1st month: 16 (4.6) After 3 months: 19 (2.4) After 6 months: 20 | | | | | | After 12 months: 20
(0.9)
After 12 months: 20
(0.2) | | Morganti et al.
2005
Italy | N=284 (184M, 100F) Mean age: 50.4 <u>+</u> 19.3 (12-86) Mean time post-injury: 56.9 <u>+</u> 43.9 days | Correlations between: 1. WISCI and SCIM: r=0.97 2. WISCI and FIM: r=0.7 | Inter-rater reliability
for the WISCI II: r =
1.00 (p<0.001) | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|--|-------------|------------------------------------| | Retrospective examination Large rehabilitation hospital in center of Italy | Non-traumatic = 177
Rraumatic = 107
Lesion Level: 81
Cervical, 148 Thoracic,
55 Lumbar-sacral
AIS: 84A, 19B, 129C,
52D | 3. WISCI and LEMS=0.58 4. WISCI and Barthel Index (BI): r=0.67 5. WISCI and RMI: r=0.67 | | | | Rehabilitation
hospital in Italy | Concurrent validity sample: N=76 Traumatic or non traumatic SCLs admitted between 1997-2001. Non-traumatic etiology was present in the majority of the patients (177/284): inflammatory (40), vascular (36), neoplastic (39), degenerative (62); traumatic lesions (107/284): car accident | Groups: Lower Extremity Motor Score (LEM) and WISCI: r=0.58 (p<0.001) (subgroup of 200 patients) Locomotion outcome at discharge - LEMS and WISCI (eliminating levels 0 and 20): r=0.57 (p<0.001) Levels at discharge for young patients – LEMS and WISCI: r=0.50 (p<0.01) Levels at discharge for older patients – LEMS | | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|---|--|-------------|------------------------------------| | | (38), motorcycle accident (15), sport accident (7), act of violence (6), suicide attempts (6), and accidental falls (31). | and WISCI: r=0.64 (p<0.01) Discharge for non- trauma - LEMS and WISCI: r= 0.58 (p<0.01) Discharge for trauma - LEMS and WISCI: r= 0.49 (p<0.01) WISCI compared to; Rivermead Mobility Index (RMI): ρ= 0.67 Barthel Index (BI) ρ= 0.67 Spinal Cord Independence Measure (SCIM): ρ= 0.97 Functional Independence Measure (FIM): ρ= 0.70 RMI and BI: ρ=0.6 RMI and SCIM: ρ=0.9 | | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|---|-------------|------------------------------------| | | | BI and SCIM: ρ=0.7 | | | | | | BI and FIM: ρ=0.7 | | | | | | SCIM and FIM: ρ=0.8 | | | | | | All p < 0.001 | | | | | | WISCI (walking with
assistance) levels at
discharge and AIS at
admission:
AIS A vs B: r=0.573
AIS AB vs C: r=0.07
AIS AB vs D: r=0.002
AIS C vs D: r=0.1 | | | | | | WISCI (independent walking) levels at discharge and ASIA at admission: | | | | | | AIS A vs B: r=0.02 | | | | | | AIS AB vs C: r=<0.001 | | | | | | AIS AB vs D: r=<0.001 | | | | | | AIS C vs D: r=<0.001 | | | | | | WISCI scale is more sensitive scale for documenting change | | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |--|--|---|--|------------------------------------| | | | in levels of walking
along a hierarchical
order, integrating
devices, braces and
physical | | | | Ditunno & Ditunno, 2001 USA Retrospective analysis Clinical setting | N=103 SCI AIS classification: A=14 B=18 C=52 D=19 | Correlation of ASIA grades with WISCI levels were significant: at initial ambulation (p<0.03) and at maximum recovery of walking function (p<0.001). Initial ASIA grades and final WISCi levels correlated at p<0.001. Improvements occurred in one direction in 94% of subjects. | | | | Ditunno et al. 2000 8 SCI centers in Australia, Brazil, | N = 24 individuals (8 teams of three composed of health professionals) created this measure. | The WISCI was
analyzed to examine
whether it appears to
measure the | 100% agreement
across all 24
individual
international | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|--|-----------------------------------|------------------------------------| | Canada, Korea, Italy, the UK, and the USA Methodological study using a modified Delphi technique | | construct that it purports to measure. Pilot data at two SCI centers: W = 0.843 (P<.001) Across all eight SCI centers: International individual data sets: W=0.860 (P<.001). Team data sets: W = 0.872 (P<.001) Sub-group possible pairs of ranking: Clinical physician and Spinal cord injury expert: ρ=0.968 (P<.01). Physical therapist and Spinal cord injury expert: ρ=0.944 (P<.01). Physical therapist and Clinical physician: ρ=0.974 (P<.01) | participants and all eight teams. | | | Author Year
Country
Research
Design
Setting | Demographics and
Injury
Characteristics of
Sample | Validity | Reliability | Responsiveness
Interpretability | |---|--|---|-------------|------------------------------------| | | | Group Consensus: Using a walker is less impaired than parallel bars. Item 10 was eliminated as there was unacceptable variance. | | | | | | Using a brace, irrespective of one or two canes, reflects a more severely impaired individual than someone without braces. | | | | | | Functional Independence Measure (FIM): ρ= 0.765 (P<.001). 80% of WISCI items fell into two of the FIM categories. | | |