Author Year; Country Score Research Design Total Sample Size	Methods	Outcome				
	 Population: 14 participants (8 men, 3 women); age: 35 ± 12 years (range: 21–61); motor complete para (n=6) or tetraplegia (n=5); TPI: 44 ± 18 days (range: 22–65). AIS A. Treatment: Pamidronate for 12 months. Participants randomized to 1. 60mg intravenous (n=6) or 2. Placebo (n=5) Outcome measures: BMD by DXA, bone turnover markers at baseline, 1, 2, 3, 6, 9, 12-months post-SCI. 	 There was no significant between-group difference in BMD decline at 1 year. The treatment group had significantly lower 24-hr urinary calcium at 1 month vs. placebo group (P<0.05) and there were no significant changes in markers of bone formation over the 12-month study. 				
Bauman et al. 2005a; USA	Effect Sizes: Forest plot of standardized mean differences (SMD ± 95%CI) as calculated from pre- to post-intervention data and pre-intervention to retention/follow-up data					
PEDro=IU RCT	Bauman et al 2005a;	Pamidronate				
Level I N=14	Leg BMD (Pre->Post) Pelvis BMD (Pre->Post) Distal Femur BMD (Pre->Post) Proximal Tibia BMD (Pre->Post) Leg BMC (Pre->Post) Leg BMD (Pre->Ret) Pelvis BMD (Pre->Ret) Distal Femur BMD (Pre->Ret) Proximal Tibia BMD (Pre->Ret) Leg BMC (Pre->Ret) -2 -1.5 -1 Favours Control 12 & 24 months post-baseline data used as post-treatment	0.53 (-0.69,1.75) 0.22 (-0.97,1.41) 0.13 (-1.06,1.31) -0.24 (-1.44,0.95) 0.20 (-1.00,1.39) 0.37 (-0.84,1.57) 0.49 (-0.72,1.70) 0.07 (-1.12,1.25) -0.16 (-1.35,1.03) -0.5 0 0.5 1 1.5 2 SMD (95%C.I.) Favours Treatment ent & retention data, respectively				
<u>Minaire et al.</u>	Population: 17 men and 4 women;	1. No reported adverse				

Author Year; Country Score Research Design Total Sample Size	Methods	Outcome		
1981 France PEDro=10 RCT Level 1 N=21	age: 29 years (range: 15-54); traumatic complete paraplegia; TI - TI2; TPI: 7.6 days (range: 5-29). Treatment : Clodronate for 3.5 months. Participants randomized to 1. 400mg per day (n=7); 2. 1,600 per day (n=7); or 3. Placebo (n=7). Outcome measures: BMD by DPA, histomorphometry	 effects on bone mineralization with intervention. Increase in serum and urine markers in the Placebo group (indicative of increased bone turnover). Effective for acute prevention of declining bone mass and maintenance of BMC of the femur and tibia in the treatment groups. 		
	Effect Sizes: Forest plot of standardized mean differences (SMD ± 95%CI) as calculated from pre- to post-intervention data and pre-intervention to retention/follow-up data			

Author Year; Country Score Research Design Total Sample Size	Methods	Outcome
	Minaire et al. 1981; Disodium	m Dichloromethylene Diphosphate 400mg/day
	BMC @ Lower End of Tibia (Pre->Post) Osteoclast Density in Tb. (Pre->Post) Periosteocytic Lacunae Size (Pre->Post) Serum Alkaline Phosphatase (Pre->Post) Serum Phosphate (Pre->Post) Thickness Idx. of Osteoid Seams (Pre->Post) Total Bone Density (Pre->Post) Total Resorption Surface (Pre->Post) Tb. Volume (Image Analyzer) (Pre->Post) Tb. Volume (Manual Method) (Pre->Post) Trabecular Osteoid Surfaces (Pre->Post) Trabecular Osteoid Volume (Pre->Post) BMC @ Lower End of Tibia (Pre->Ret) Serum Alkaline Phosphatase (Pre->Ret)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Tb. = trabecular bone	ravours control Sivid (35%c.i.) ravours freatment

Author Year; Country Score Research Design Total Sample Size	Methods				0	utco	me	
	Minaire et al. 1981; Disodium Dichlor	omet	hylen:	e Dipho	sphate	1600m	g/day	
	BMC @ Lower End of Tibia (Pre->Post)			_	0.24	0.69 (-0.	40,1.78)	
	Osteoclast Density in Tb. (Pre->Post)		0.00		0.34 (0.72,1.3	(9)	_
	Periosteocytic Lacunae Size (Pre->Post) -		-0.68	-1.77,0.	11)			202
	Serum Alkaline Phosphatase (Pre->Post)					1.0	1 (-0.13,	2.14)
	Serum Phosphate (Pre->Post)					0.83 (-	0.28,1.9	3)
	Thickness Idx. of Osteoid Seams (Pre->Post)					1.0	0 (-0.14,	
	Total Bone Density (Pre->Post)		-0	40 (-1.5	2,0.61)		260153	111
	Total Resorption Surface (Pre->Post)			0		0.90 E 1 1 1	5 (-0.15,2	
	Tb. Volume (Image Analyzer) (Pre->Post)		-	017	1 22 0	00)		
	Tb. Volume (Manual Method) (Pre->Post)			-0.17	1.22,0.	60104	9169)	
	Trabecular Osteoid Surfaces (Pre->Post)				034(.0 72 1 3	8,1.08) 19)	
	Trabecular Osteoid Volume (Pre->Post)				0.3-0		1.28 (0	09 2 46)
	BMC @ Lower End of Tibia (Pre->Ret)			0	11609	41.15)	1.20 (0	
	Serum Alkaline Phosphatase (Pre->Ret)		-0.5) (-1.67.0	.49)			
	Serum Phosphate (Pre->Ret)	-						
	-2 -	1.5	-1	-0.5	0	0.5	1	1.5 2
	Favo	urs C	ontro	I SN	1D (95%	6C.I.)	Favou	rs Treatmer
	Tb. = trabecular bone							
<u>Chappard et</u> <u>al. 1995</u> ; France PEDro=9 RCT Level 1 N=20	Population: 20 participants (14 men, 6 women), age: 28.0 + 6.4 years; traumatic injuries between C5-T12. Treatment: Tiludronate for 3 months. Participants randomized to 1. 400 mg/day (n=7); 2. 200 mg/day (n=7); or 3. Placebo (n=6). Outcome measures: histomorphometry.		1 - - 2.	There total treat (400 treat (200r grou ncre ndic grou grou	e was bond men mg/o mg/o ps. asec ators p vs. ps.	s an i e volu t gro (day) t gro lay) a l bon s in tl the t	incre ume vs. oup 2 and p he res he pl	ase in in the blacebo sorption acebo ment
	Effect Sizes: Forest plot of standa 95%CI) as calculated from pre- an	nrdi d p	zed ost	mea -inte	an di rven	ffere tion (nces data	(SMD ±

Author Year; Country Score Research Design Total Sample Size	Methods				Out	come	•	
	Chappard et al. 1995;	Titud	ronate 200	0 mg/d	ау			
				0.42 (-	0.69,1.5	3)		
	Bone volume: BV/TV	-	0.2	20 (-0.89	,1.30)			
	Osteoid volume: OV/BV			0.54	4 (-0 <u>.5</u> 8,1	.66)	-	
	Osteoid surfaces: OS/BS		-0.00 (-	1.09,1.0)9)			
	Osteoid thickness: O.Th —	d	0.27 (-1.36,	0.83)				
	Resorption: ES/BS -2.88 (-4.60,-1.17)			-		_		
				I				
	-2 -1.5 -1		-0.5		0.5	1	1.5	2
	Chappard et al. 1995; Bone volume: BV/TV Osteoid volume: OV/BV Osteoid surfaces: OS/BS Osteoid thickness: O.Th	-0.4 -0.4).59 (- -(ronate 400 11 (-1.51,0.7 -0.01 (- 1.71,0.54) 0.31 (-1.41,0	0 mg/d 0.47 0) 1.10,1.0	ay (-0.64,1.! 8)	58)		
	-1.75 (-3.10,-0.39) Osteoclast number: N.Oc/B.Ar							
	-2 -1.5 -1 Favours Control		-0.5 SMD (9	0 95%C.I.	0.5)	1 Favou	1.5 Irs Treatn	2 nent
Schnitzer et al. 2016; USA PEDro=8 RCT Level 1 N=16	 Population: 16 participants (15 men, 1 women) with acute SCI; A A/B, or AIS-C; and non-weightbearing; age: 38.6 ± 16.2 years; 8 cervical, 8 thoracic; TPI: Placebo = 95.3 ± 50.0 days, Zoledronic acid: 35.1 ± 15.4 days. Treatment: Infusion of zoledronic acid (5 mg) or placebo (dilutant 	S- -	1. Sig gro cha zol pla L	inific oup o onthe ange edro icebo i	cant k differ s pos onic a o): bar s dat s 4±1.8 cotal 7±1.09	petwe ence st-trea mean acid v pine I % vs. hip B % vs	een- at 6 atmen ±SD, s. BMD: -2.5±2. MD: 12.3±6	t in 2% .9%

Author Year; Country Score Research Design Total Sample Size	Methods	Outcome		
	only) Outcome measures: BMD by DXA, bone turnover markers at baseline, 3, 6, 12-months post-treatment.	Right total hip BMD: -2.2±3.4% vs8.6±3.5% Left femoral neck BMD: -1.1±3.5% vs11.1±7.4% Right femoral neck BMD: -5.1±6.5% vs 20.0±6.4% 2. Zoledronic acid group observed decreased BMD for left & right total hip and femoral neck but observed increased BMD for lumbar spine over 18- 24 months post-treatment 3. Elevated levels of serum CTX and PINP at baseline, and are reduced at 3 months in both zoledronic acid and placebo groups 4. Delayed zoledronic acid infusion in those with >10% BMD loss after 6 months of placebo resulted in stabilization in total hip, left femoral neck, and lumbar spine; however, BMD of left distal femur continued to decline 5. No adverse effects other than temperature elevations (n=3)		
	Effect Sizes: Forest plot of standardized mean differences (SMD ± 95%CI) as calculated from pre- and post-intervention data			

Author Year; Country Score Research Design Total Sample Size	Methods	Outcome
	Schnitzer et al. 2016; Z	oledronic Acid
	BMD Lumbar Spine BMD Left Hip BMD Right Hip BMD Left Femoral Neck BMD Right Femoral Neck BMD Distal Femoral Epiphysis BMD Distal Femoral Metaphysis BMD Proximal Tibia -2 -1.5 -1 Favours Control	2.25 (0.67,3.83) 1.61 (0.23,2.99) 1.71 (0.31,3.12) 1.59 (0.22,2.97) 2.13 (0.59,3.67) 0.11 (+1.02,1.25) 0.48 (+0.68,1.64) 1.26 (+0.03,2.55) -0.5 0 0.5 1 1.5 2 SMD (95%C.I.) Favours Treatment
Pearson et al. 1997 Canada PEDro=8 RCT Level 1 N=13	Population: 12 men and 1 woman; age: 22-57 years; injuries between C5-T12; AIS: A or D. Treatment: Etidronate for 30 weeks. Participants randomized to 1.800mg daily (n=6; 5 men 1 woman; mean age: 35.6 years) or 2. Conventional rehab and calcium 1000mg/day (n=7; 7 men; mean age: 33.6 years). Outcome measures: DXA and adverse event rate.	 BMD loss at the distal femur was 26% and 22% at the proximal tibia. The rate of decline in BMD was greatest amongst the AIS A individuals. BMD of lower extremity for the Etidronate-treated AIS D individuals was preserved. Oral Etidronate was safe and well-tolerated by participants.
Gilchrist et al. 2007 New Zealand PEDro=7 RCT Level 1 N=31	Population: 31 participants (22 men, 9 women) age: 17-55 years; 10 AIS A, 1 AIS B, and 3 AIS C. Treatment: Alendronate (oral) for 12 months within 10 days of acute injury. Participants randomized to 1. 70 mg once weekly (n=15; 10 men and 5 women); or 2. Placebo (n=16;	 BMD at the femoral neck was maintained in the treatment group, and there was less BMD loss at other hip sites compared with the placebo group. BMD at the hip in the Placebo group declined

Author Year; Country Score Research Design Total Sample Size	Methods	Outcome	
	12 men and 4 women). Outcome Measures: BMD and body composition by DXA, ultrasound, bone turnover markers.	 steadily over the 18 months follow-up. 3. At 12 months, there was a 5.3% difference in total body BMD and a 17.6% difference in the percent change in total hip BMD between the two groups. 4. Alendronate compared with placebo-induced reductions in urinary calcium excretion and serum CTX at 3 months only. 	
	Effect Sizes : Forest plot of standardized mean differences (SMD ± 95%CI) as calculated from pre- to post-intervention data and pre-intervention to retention/follow-up data		

Author Year; Country Score Research Design Total Sample Size	Methods	Outcome
	Gilchrist et al. 2007; Oral Ale	endronate 70 mg/wk
	BMD Lumbar Spine (Pre->Post) BMD Hip (Pre->Post) BMD Femoral Neck (Pre->Post) BMD Trochanter (Pre->Post) BMD Femoral Shaft (Pre->Post) BMD Total Body (Pre->Post)	0.30 (-0.49,1.09) 0.28 (-0.51,1.07) 0.85 (0.03,1.68) 1.05 (0.21,1.90) 0.80 (-0.03,1.62) 0.46 (-0.34,1.26)
	BMD Total Arms (Pre->Post) BMD Total Legs (Pre->Post) BMD Lumbar Spine (Pre->Ret) BMD Hip (Pre->Ret) BMD Femoral Neck (Pre->Ret) BMD Trochanter (Pre->Ret) BMD Femoral Shaft (Pre->Ret)	0.36 (-0.43,1.15) 0.52 (-0.28,1.32) 0.39 (-0.41,1.18) 0.27 (-0.52,1.06) 0.78 (-0.04,1.60) 0.91 (0.08,1.75) 0.83 (0.00,1.65)
	BMD Total Body (Pre->Ret) BMD Total Arms (Pre->Ret) BMD Total Legs (Pre->Ret) -2 -1.5 -1 Favours Control SD calculated from Standard Error of the Mean (SEM)	-0.5 0 0.5 1 1.5 2 SMD (95%C.I.) Favours Treatment
Shapiro et al. 2007 USA PEDro=7 RCT Level 1 N=18	Population: 14 men and 4 women with traumatic SCI; age: 18-60 years (Placebo: 28.4 ± 9.4; Treatment: 30.1 ± 14.2); tetraplegia (n=5) or paraplegia (n=13); AIS A (n=14) or AIS B (n=4). Treatment: Zoledronic acid. Participants randomized to 1. Single-dose intravenous solution either 4mg (n=4) or 5mg (n=4)	1. Treatment group: Six months after zoledronic acid, BMD, bone cross-sectional area, and sectional modulus increased at the hip and buckling ratio decreased consistently with improved bone outcomes. At 12 months, narrow-

Author Year; Country Score Research Design Total Sample Size	Methods	Outcome
	(Total n=8), or 2. Placebo group received 50ml of normal saline over 15 minutes (n=10) Participants with low serum 25-hydroxyvitamin D received oral supplementation. Outcome Measures: bone turnover markers, BMD by DXA	 neck femur values declined, and intertrochanteric and femoral shaft BMD was maintained. 2. Placebo group: decrease in bone outcomes and an increase in buckling ratio at the hip at 6 and 12 months.
	Effect Sizes : Forest plot of standard 95%CI) as calculated from pre- and p	ized mean differences (SMD ± post-intervention data
	Shapiro et al., 2007; Zoledr	onic Acid (4 or 5mg) 0.72 (-0 <u>.</u> 27,1.71)
	Urine NTx/Cr (0-12mo)	
	Favours Control S	SMD (95%C.I.) Favours Treatment
<u>Minaire et al.</u> <u>1987</u> France PEDro=7 RCT Level 1 N=21	Population: 21 men and women; age: 15-54 years, complete paraplegia. Treatment: Clodronate for 100 days. Participants randomized to 1.400mg per day (n=7); 2. 1,600 per day (n=7); or 3. Placebo (n=7). Outcome measures: DXA, histomorphometry, bone turnover markers.	 There was a greater increase in bone removal markers in Placebo group (48%), compared with treatment groups (17-27%). BMD was maintained in treatment groups with a ↓ in placebo group. Lower bone turnover markers in treatment groups.
<u>Bubbear et</u> <u>al. 2011</u> UK PEDro=6	Population : 14 acute SCI participants (Control: 5 men, 2 women; mean age 27 ± 14.4;	 Significant difference between control and treatment groups over 12 months at lumbar spine

Author Year; Country Score Research Design Total Sample Size	Methods	Outcome
RCT Level 1 N = 14	Treatment: 4 men, 3 women; mean age 31.6 ± 7.1) Treatment : 4 mg intravenous zoledronic acid (active treatment group) or standard nursing/medical care (control group) Outcome Measures : BMD using DXA at baseline, 3, 6, 12 months for lumbar spine (L1-4) and hip (total, femoral neck, trochanter); Bone turnover markers (serum CTX and P1NP) and urinary N-terminal telopeptide/creatine ratio).	 (+0.8±4.9% vs. +3.5±3.9%, p = 0.033), total hip (-15.8±8.9% vs3.4±3.0%, p=0.005), trochanter (-17.9±9.4% vs4.5±5.7%, p=0.028) 2. No significant difference between groups with femoral neck BMD or with creatine markers. 3. Bone turnover markers normalized within 6 weeks to 3 months in treatment group vs to up to 12 months in control group 4. 5 of 7 participants in zoledronic group had flulike symptoms over 24 hours
	Effect Sizes: Forest plot of standard 95%CI) as calculated from pre- and p Bubbear et al. 2011; Z BMD lumbar spine BMD total hip 0.44 (-1.65, BMD femoral neck BMD trochanter PINP CTX -2 -1.5 -1 -0.5 Favours Control SM	ized mean differences (SMD ± cost-intervention data 0.26 (0.93,1.46) 0.04 (-1,14,1.23) 0.77) 0.33 (-0.87,1.53) 0.57 (-0.65,1.79) 51,0.88) 0 0.5 1 1.5 2 D (95%C.I.) Favours Treatment

Author Year; Country Score Research Design Total Sample Size	Methods	Outcome
Nance et al. <u>1999</u> Canada Prospective Controlled trial (nonrandom ized) Level 2 N=24	 Population: 22 men and 2 women, ages 25-57, injuries between C5-T12, AIS A-D. Treatment: Pamidronate for 6 months. Participants randomized to 30 mg intravenous every 4 weeks x 6 doses (total 180 mg/participant) [n=14; 30.8 ± 8.3 years (range 20 - 45)] or conventional rehab [n=10; 35.1 ± 10 years (range 25 - 57)]. Outcome measures: BMD by DXA, urine biochemical bone markers. 	1. There was a lower % decline in BMD in treatment vs. control group. The mean overall BMD decline was 8.1% in the placebo group but only 2.7% in the treatment group (p=0.02). The average loss of BMD was 3.1% in the AIS D group and 7.7% in the AIS A group.

* All data expressed as mean±SD, unless expressed otherwise.