Reviewer ID: Christie Chan, John Zhu, Jeremy Mak, Kyle Diab, Joanne Chi

Type of Outcome Measure: 6 Minute Walk Test			
Author ID and Year	Study Design	Setting	Population (sample size, age) and Group
Perez-Sanpablo et al. 2017	Observational, descriptive, transversal	National Institute of Rehabilitation, Mexico City	$\mathrm{N}=23(15 \mathrm{M} / 8 \mathrm{~F})$ Mean Age: 45.6 ± 12.6 years Mean Time since injury: 42 ± 117 months AIS D, motor subacute and chronic incomplete
Amatachaya et al. 2014	Crosssectional	A major tertiary referral hospital in Thailand	$\mathrm{N}=94,65$ male Age (FIM7): 49.2 ± 10.0 Age (FIM6): 51.9 ± 13.2 Age (FIM5): 45.2 ± 13.2 Independent ambulatory individuals with SCl . FIM-Locomotor 7: 33; Time since Injury (months): 34.6 ± 26.56 FIM-L 6: 31; Time since injury (months): 44.3 ± 43.2 FIM-L 5: 30; Time Since Injury (months): 36.7 ± 30.6 AIS-D=52 Incomplete tetraplegia $=28$
$\begin{array}{\|l} \hline \text { Barbeau et al. } \\ 2007 \end{array}$	Longitudinal study comparing walking speed for 6MWT and the 15.2 m walk test at 3, 6 and 12 months after entry into initial rehab	Spinal Cord Injury Locomotor Trial (SCILT)	SCILT: multi-center RCT $\mathrm{N}=107$ AIS C and D $\mathrm{N}=38$ ASIA B All had lesions b/w C5 and L3 Group 1: $\mathrm{N}=66$ individuals with SCl who completed both assessments 3 months after entry to rehab Group 2: $\mathrm{N}=69$ individuals with SCl who completed both assessments 6 months after entry to rehab Group 3: $\mathrm{N}=70$ individuals with SCI who completed both assessments 12 months after entry to rehab All patients underwent either 12 weeks of step training with body weight support on a treadmill combined with overground practice OR a defined overground mobility intervention (CONT).
$\text { \|l\|l\|l\|l} \begin{array}{\|l} \text { Datta et al. } \\ 2009 \end{array}$	Cohort	The NeuroRecovery Network (NRN), a specialized network of treatment enters providing standardized, activity-based therapy for patients with SCI.	$\mathrm{N}=97$ (71M, 26F) Mean Age: $38 \pm 17 y$ Mean time since SCI = 11.9 months Incomplete SCl AIS C or D Mechanism of Injury: Motor Vehicle Accident $=34$ Fall $=29$ Sporting Accident $=16$ Other nontrauma $=8$ Medical/surgical $=6$ Violence $=4$
$\begin{array}{\|l} \hline \text { Ditunno et al. } \\ 2007 \end{array}$	Single-blinded, paralledgroup, multicenter randomized clinical trial	6 regional SCI inpatient rehab. centres	$\mathrm{N}=146(114 \mathrm{M}, 32 \mathrm{~F})$ Mean age $=32$ years (range $16-69$ years) Incomplete spinal cord injury patients who had a Functional Independence Measure locomotor score for walking of < 4 on entry.

$\begin{array}{\|l} \hline \text { Duffell et al. } \\ 2015 \end{array}$		Outpatient service at the Rehabilitation Institute of Chicago	$\mathrm{N}=83(26 \mathrm{~F}, 57 \mathrm{M})$ Age: 18 - 50 Mean age $=47.28$ Incomplete SCI patients (AIS-C/D, SCI Ivl above T10, 12month+ post injury, able to ambulate) treated with either Lokomat, tizanidine, or no intervention
$\begin{aligned} & \text { Forrest et al. } \\ & 2014 \end{aligned}$	Prospective observational cohort	7 out-patient clinical sites in the Christopher and Dana Reeve Foundation NeuroRecovery Network (NRN) (Feb 2008-Apr 2011)	$\mathrm{N}=249,190$ male Mean age=42, $S D=16$ Median time since $\mathrm{SCl}=0.7 \mathrm{yrs}$, range $=0.1-21.6$ AIS-C $=20, D=179 ; 50$ not evaluated Etiology: 15 non-trauma, 83 MVA, 54 fall, 45 sporting, 25 medicine/surgery, 10 other causes Median treatment sessions: 40; range=2-353
Harkema et al 2016	Prospective multicenter observational; NRS 13-item version	6 outpatient rehabilitation centers in the Christopher and Dana Reeve Foundation NRN	$\mathrm{N}=152$ (123M, 29F) Mean (SD) age: 36 (15) Median (range) time since SCI: 0.9 (0.1-45.2) years 110 cervical, 42 thoracic AIS-A/B/C/D: 43/21/39/49 Physician-referred outpatients without progressive lesions above T11, capable of stepping using body weight support, with ability to wean off anti-spasticity medication Median (range) number of sessions of NRN-standardized locomotor training: 70 (23-520)
$\begin{aligned} & \text { Jackson et al. } \\ & 2008 \end{aligned}$	A subcommittee of international experts evaluated locomotion measures	N/A	$\mathrm{N}=54$ expert raters
Musselman and Yang 2013	Crossover trial		$\mathrm{N}=20$ (14M, 6F) Age: 46.0 ± 13.6 Time since SCI (years): 5.4 ± 8.8 Fast walkers ($>0.5 \mathrm{~m} / \mathrm{s}$): $\mathrm{N}=9$ Self-selected walkers: $\mathrm{N}=11$
$\begin{aligned} & \text { Olmos et al. } \\ & 2008 \end{aligned}$	Crosssectional study		$\mathrm{N}=18(12 \mathrm{M}, 6 \mathrm{~F})$ age range: 19-72 years old All community-ambulating AIS D SCI patients, > 6 months post-injury, walking at a speed of at least $0.25 \mathrm{~m} / \mathrm{s}$
$\begin{aligned} & \text { Pithon et al. } \\ & 2015 \end{aligned}$		Ambulatory clinic of Hospital Universitário da Universidade Estadual de Campinas	$\mathrm{N}=9$, all male Mean age $=32.78 \pm 11.58$ Time since $\mathrm{SCI}=4 \sim 13 \mathrm{yrs}$ All AIS-A Lvl of injury T4~T12
$\begin{array}{\|l} \hline \text { Scivoletto et al. } \\ 2011 \end{array}$	Methodologica I	SCI unit of a rehabilitation hospital.	$\mathrm{N}=37$ (28M, 9F) median age: 58.5 yrs (range: 19-77) 20 of 37 patients had a non-traumatic lesion injury level: 12 cervical, 14 thoracic, 11 lumbar

Tester et al 2016	Prospective; testing the Neuromuscula r Recovery Scale 14-item version	6 outpatient sites in the Christopher and Dana Reeve Foundation NeuroRecovery Network	$\mathrm{N}=72$ (57M, 15F) completing 20 sessions of standardized locomotor training Mean (SD) age: 36 (15) Median (range) time since SCI: 0.7 (0.1-14.7) years $\mathrm{N}=45$ longer than 6 months 44 cervical, 28 thoracic AIS-A/B/C/D: 17/10/20/25
van Hedel et al. 2006	Longitudinal study	European Multicenter Study of Human Spinal Cord Injury	$\mathrm{N}=22$ (18M, 4F) Mean age $=45.5$ years (range $17-78$ years) All subjects have incomplete injuries and have achieved walking capacity in early stages after injury. Cervical $=13$ Thoracic = 1 Lumbar $=7$ Sacral $=1$
van Hedel et al. 2005	Cross sectional study with repeated assessments	The SCI centre of a university hospital in Switzlerland.	Validity: $\mathrm{N}=75$ (45M, 30F) Mean age $=54 \pm 20$ years Cervical $=25$ Thoracic $=21$ Lumbar $=21$ Sacral $=8$ Reliability $\mathrm{N}=22$ (14M, 8F) Mean age $=52 \pm 20$ years Cervical = 7 Thoracic = 7 Lumbar $=7$ Sacral $=1$

1. RELIABILITY

Author ID	Internal Consistency	Test-retest, Inter-rater, Intra-rater
PerezSanpabl o et al. 2017		
van Hedel et al. 2005	No data available	Intrarater $=0.981(\mathrm{P}<.001)$ Interrater $=0.970(\mathrm{P}<.001)$ Bland-Altman plot: Significant difference in intra-rater assessment ($-20.5 \pm 27 \mathrm{~m}$) using paired t-test at $p=0.002$. No significant differences with inter-rater assessment (-14.8 $\pm 33.6 \mathrm{~m}$).
Scivolett o et al. 2011	No data available	The 6-MWT was tested on a longer track (50 m) vs. on a short track (10m): The correlation between the results of the two methods was between 0.91 and 0.93

Last Updated: July 20, 2019
Articles up-to-date as of: July 2019

		The inter-rater reliability was between 0.99 and 1 for the two methods. The intra-rater reliability was between 0.98 and 0.99 for the two methods.
Pithon et al. 2015		
Mussel man and Yang		
2013		

	Independent walking group: - 6MWT and TUG: $\rho=-0.88, n=44$ - 6MWT and 10MWT: $\rho=-0.94, n=43$ Correlation of 6MWT with Walking Index for Spinal Cord Injury (WISCI) II: Overall: $\rho=0.60, n=60$ Subgroups: - WISCI II scores of 0 to $10: \rho=-0.22, n=13$ - WISCI II scores of 11 to $20: \rho=0.64, n=47$ - WISCI II dependent walking group: $\rho=-0.21, \mathrm{n}=15$ - WISCI II independent walking group: $\rho=0.65, \mathrm{n}=45$
van Hedel et al. 2006	Spearman correlation w/Lower Extremity Motor Score Within 1 month: $\mathrm{r}=0.54[\mathrm{P}=.01]$ After 3 months: $r=0.34[\mathrm{P}=.12]$ After 6 months: $r=0.49[P=.02]$ After 12 months: $\mathrm{r}=0.55[\mathrm{P}<.01]$ Spearman correlation w/Walking Index for SCI II Within 1 month: $r=0.78[P<.001]$ After 3 months: $r=0.28[\mathrm{P}=.20]$ After 6 months: $r=0.36[P=.10]$ After 12 months: $r=0.36[P=.10]$ Spearman correlation w/10-Meter Walk Test Within 1 month: $r=-0.91[P<.001]$ After 3 months: $\mathrm{r}=-0.90[\mathrm{P}<.001]$ After 6 months: $r=-0.87[P \lll 001]$ After 12 months: $r=-0.86[P<.001]$
Datta et al. 2009	Correlation between the first principle component of change in Berg Balance Scale items and changes in six-minute walk distance: Kendall $\mathrm{t}=0.34$ Spearman $p=0.48$ $\mathrm{P}<0.01$ for all
Forrest et al. 2014	"Significantly higher speeds occurred with higher classifications [SCI-FAI] for both the 6MWT and 10MWT" Pearson's r with 10MWT: At enrollment in the NRN: $r=0.93$ At discharge: $r=0.94$ Overall: $r=0.94$ Regression analysis with 10MWT shows regression differing significantly with line of agreement - 6MWT \& 10MWT not redundant ($\mathrm{p}<0.001$)
Amatac haya et al. 2014	Pearson's correlation with 10MWT: In FIM-L=6 patients, $\mathrm{r}=0.74, \mathrm{p}<0.001$ In FIM-L=7 patients, $r=0.83, p<0.001$ In FIM-L=5 patients, $\mathrm{r}=0.31, \mathrm{p}=0.113$
Jackson et al. 2008	Content Validity: Expert Evaluations (52 votes): Valid or Useful: 19 (37\%) Useful but requires validation: 30 (58%) Not useful or valid for research: 3 (6\%)
Harkem	Pearson's r (95\%CI) with ASIA Motor Scales:

Last Updated: July 20, 2019
Articles up-to-date as of: July 2019
Gait speed was very similar at 3 and 6 month testing $\mathrm{b} / \mathrm{w} 15.2 \mathrm{~m}$ and 6 minute walking tests; however, gait speed was significantly faster during the 12 month follow up for the 15.2 m test.

Walking Speeds (Mean, Standard Error) Used for the 15.2-m Versus 6-Minute Walk by the Slowest, Middle ($25 \%-$ 75%), and Fastest Patients at Each Data Collection

Time:	Variable:	Quartile:	\# of patients:	Mean (m/s) (Standard error)	P value
3 months	$\begin{gathered} \text { 15.2-m } \\ \text { 6-minute } \end{gathered}$	Lower	14	$\begin{aligned} & 0.20(0.06) \\ & 0.16(0.06) \end{aligned}$. 15
	$\begin{gathered} 15.2-\mathrm{m} \\ 6 \text {-minute } \end{gathered}$	Middle	33	$\begin{aligned} & 0.74(0.05) \\ & 0.62(0.29) \\ & \hline \end{aligned}$. 07
	$\begin{gathered} 15.2-\mathrm{m} \\ \text { 6-minute } \\ \hline \end{gathered}$	Upper	19	$\begin{aligned} & 1.55(0.06) \\ & 1.33(0.41) \\ & \hline \end{aligned}$. 01
6 months	$\begin{gathered} 15.2-\mathrm{m} \\ \text { 6-minute } \\ \hline \end{gathered}$	Lower	10	$\begin{aligned} & 0.18(0.06) \\ & 0.16(0.09) \\ & \hline \end{aligned}$. 84
	$\begin{gathered} 15.2-\mathrm{m} \\ 6 \text {-minute } \\ \hline \end{gathered}$	Middle	39	$\begin{aligned} & \hline 0.86(0.04) \\ & 0.82(0.04) \\ & \hline \end{aligned}$. 53
12 months	$\begin{gathered} \hline 15.2-\mathrm{m} \\ \text { 6-minute } \\ \hline \end{gathered}$	Lower	16	$\begin{aligned} & \hline 0.32(0.07) \\ & 0.27(0.08) \\ & \hline \end{aligned}$. 56
	$\begin{gathered} 15.2-\mathrm{m} \\ 6 \text {-minute } \end{gathered}$	Middle	34	$\begin{aligned} & 1.01(0.06) \\ & 0.87(0.05) \end{aligned}$. 03
	15.2-m 6-minute	Upper	20	$\begin{aligned} & 1.88(0.06) \\ & 1.46(0,07) \\ & \hline \end{aligned}$	<. 001

Forrest
et al.
2014
Mussel man
and
Yang
2013
Duffell \quad MDC: $37.1 \mathrm{~m}(0.103 \mathrm{~m} / \mathrm{s})$
et al.
2015
Tester \quad Smallest Real Difference* (SRD): $0.086 \mathrm{~m} / \mathrm{s}$
et al *Analogous to Minimal Detectable Change
2016
Harkem
a et al
2016
Median (Range) 6MWT Distances:
All individuals:
Enrollment: 0 (0-549)
Discharge: 0 (0-700)
AIS-A/B:
Non-ambulatory
AIS-C:
Enrollment: 0 (0-114)
Discharge: 0 (0-534)
AIS-D:
Enrollment: 57 (0-549)
Discharge: 264 (0-700)

* Enrollment = pre-intervention; discharge = post-intervention; median (range) number of sessions of NRNstandardized locomotor training: 70 (23-520)

