

Imaging Aspects of Spinal Cord Injury

Sebastiano Failla Manas Sharma Ruba Kiwan Yasmine Sallam Ian Chan Olivia Li Arthur Wozniak Robert Teasell

Our Partners:

Vancouver CoastalHealth Research Institute

This review has been prepared based on the scientific and professional information available in 2018. SCIRE Professional is provided for informational and educational purposes only. If you have or suspect you have a health problem, you should consult your health care provider. The SCIRE editors, contributors and supporting partners shall not be liable for any damages, claims, liabilities, costs, or obligations arising from the use or misuse of this material.

Failla S, Sharma M, Kiwan R, Sallam Y, Chan I, Li O, Wozniak A, Teasell R. (2019) Imaging Aspects of Spinal Cord Injury (Acute). In Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Noonan VK, Loh E, Sproule S, McIntyre A, Queree M. editors. Spinal Cord Injury Research Evidence. Version 7.0: p 1-32.

scireproject.com

Key Points

Magnetic Resonance Imaging

MRI is an effective diagnostic tool to assess damage to microstructures within the spinal cord as well as detecting other indications of damage such as hemorrhage and edemas.

MRI may be reliably used to predict an individual's injury severity, American Spinal Injury Association score, motor score, AIS, and neurologic outcome given an SCI

For individuals with SCI without radiographic abnormality MRI may not be useful in determining current injury severity or predicting outcome following injury.

Diffusion Tensor Imaging

DTI has value as a diagnostic imaging tool to evaluate microstructural and spinal cord abnormalities in individuals with SCI.

There is conflicting evidence as to which observations from DTI can be used to predict current and future outcomes.

DTI may be effective for predicting relationships between different SCI abnormalities within individuals.

Table of Contents

Executive Summary	1	
Methods	1	
Introduction	1	
Radiography and Computed Tomography (CT)	2	
Magnetic Resonance Imaging (MRI)	2	
Spinal Cord Injury Without Radiographic Abnormality	17	
Diffusion Tensor Imaging (DTI)	19	
Summary	31	
ferences	.33	
bbreviations		
	Executive Summary Methods Introduction Radiography and Computed Tomography (CT) Magnetic Resonance Imaging (MRI) Spinal Cord Injury Without Radiographic Abnormality Diffusion Tensor Imaging (DTI) Summary ferences breviations	

1 Executive Summary

Overall studies using magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) provide strong evidence that these are important imaging tools in the diagnosis, prognosis, and evaluation of injuries associated with SCI. MRI was shown to have high sensitivity and specificity in the detection of microstructural abnormalities related to SCI, and that these observations can be used to predict motor score and classification. There is limited evidence to suggest that MRI may be useful in the diagnosis and prognosis of motor classification in individuals with SCI without radiographic abnormalities. With respect to DTI, there is strong evidence to support its use as a diagnostic tool, however the evidence surrounding its use as a prognostic indicator are mixed. In general, there are fewer studies reporting the use of DTI in relation to SCI management compared to the use of MRI.

2 Methods

A key word literature search for scientific articles published between January 1, 2015 to August 31, 2018 investigating the use of imaging tools in the diagnosis and management of SCI was conducted using the following online databases: MEDLINE, CINAHL, Scopus, EMBASE and Cochrane Library. Population key words (i.e., spinal cord injury, quadriplegia, hemiplegia, and tetraplegia) and imaging key words (i.e., magnetic resonance imaging, CT, computed tomography, radiograph, x-ray, and imaging) were used. The search was limited to journal articles, reviews, or systematic reviews (excluding case reports) which were published in English, had a minimum sample of three adults (\geq 18 years) with an SCI. The SCI population within each study must have comprised of at least 50% of the total study population, unless results were stratified. A total of 4762 studies were found that satisfied the search criteria, after the removal of duplicates, animal and pediatric studies, and case reports 34 studies remained. Studies were considered appropriate for inclusion in this chapter if the majority of participants were within 3 months post-SCI. Articles were then further subdivided into groups based on the imaging technique used.

3 Introduction

Imaging plays a critical role in the diagnosis, treatment and rehabilitation of individuals with SCI. Conventional imaging tools have provided anatomical information leading to more targeted and overall better management of these individuals no doubt, but more recent development of advanced imaging techniques are capable of providing microstructural and metabolic information as well. Conventional radiography and computed tomography (CT) give macrostructural information about bony structures mainly, critical for the vertebral column.

Comparison of different imaging modalities helps understand appropriate use, risks and benefits of each, financial aspects and radiation issues involved, all leading to avoidance of unnecessary delay in more advanced care or treatment.

Prognosis of SCI is discussed in brief. Moreover, the psychometrics of MRI related to sensitivity, specificity, and interrater reliability are explored. More modern techniques capable of providing microstructural information built mostly upon these basic anatomic imaging tools are now available in many places and in a short subsection we discuss DTI and its role in identifying SCIs. Many more modern techniques, such as spectroscopy and perfusion MRI, are used in the research domain and are not currently being used in clinical practice, therefore, are not evaluated here. The following chapter will review contemporary clinical roles of non-invasive imaging pertaining to spinal cord injury, as well as, their role, prognostic and diagnostic.

4 Radiography and Computed Tomography (CT)

Plain radiographs use x-rays to create an image of the body using various projections (frontal, lateral). Plain radiographs play a rather limited role in today's assessment protocols for SCI, but nevertheless retain value as a quick screening tool in many situations and also are a quick way of assessing instability of the vertebral column with flexion, neutral position and extension views easily obtainable. CT is the best modality for assessment of bony details but remains rather limited for cord assessment. CT is a modality that uses x-rays to create cross-sectional images or slices of the body.

5 Magnetic Resonance Imaging (MRI)

MRI is an imaging modality that uses non-ionising radiation to construct useful diagnostic images. MRI with superior soft tissue resolution gives critical information on ligamentous, soft tissue and cord injury and is currently the gold standard for soft tissue assessment. Here in this chapter, we discuss MRI for assessment of traumatic SCI. MRI is the imaging modality of choice to diagnose acute cord compression and its effects in SCI.

-	C		
Author Year Country Research Design Score Total Sample Size	Methods		Outcome
	Diagnostic Value		
<u>Yasin et al., (2017)</u> Pakistan Observational N=38	Population: <i>SCI (n=10)</i> : Mean age=28.35±7.67yr; Gender: males=31, females=7; Level of injury: C=12, L=16; Mean time since injury=4.98±3.84d; AIS scale: NR. Intervention: Individuals suspected of SCI underwent magnetic resonance imaging (MRI) for diagnosis.	1. 2. 3. 4. 5.	MRI is a highly sensitive and accurate technique Sensitivity=96.55% Specificity=88.89% Predictive value=96.55% Diagnostic accuracy=94.74%

Table 1. Diagnosis and Prognostication With MRI

Author Year		
Country Research Design Score Total Sample Size	Methods	Outcome
· · ·	Outcome Measures: Sensitivity; specificity; predictive value; diagnostic accuracy.	
<u>Ghasemi et al.</u> (2015) Iran Observational N=40	Population: SCI (n=40): Mean age(men)=43.56±18.82yr; Mean age(women)=48.47±20.45yr; Gender: males=25, females=15; Level of injury: C=3, T=9, L=14; thoracolumbarsacral=3; unaffected=11; Mean time since injury=≤24hr; AIS scale: NR. Intervention: Two stages of magnetic resonance imaging (MRI) was performed on all individuals (one with contrast and one without). MRI was obtained using a 1.5T system with a spine coil. Images were acquired using sagittal TI and T2 sequences. Psychometrics were obtained for various spinal cord injury patterns. Outcome Measures: Specificity; positive predictive value (NPV); negative predictive value (NPV); positive likelihood (PL); negative likelihood (NL).	 For SCI with edema, MRI without contrast had specificity, PPV, NPV, PL, and NL of 75%, 100%, 100%, 94.11%, and 68.4%, respectively. For SCI with edema MRI with contrast had specificity, PPV, NPV, PL, and NL of 100%, 100%, 100%, 100%, and 0%, respectively. For SCI with hemorrhage, MRI without contrast had specificity, PPV, NPV, PL, and NL of 100%,100%,100%, 100%, and 0%, respectively. For SCI with hemorrhage, MRI with contrast had specificity, PPV, NPV, PL, and NL of 50%, 100%, 100%, 0.44%, and 13%, respectively. For SCI with combination of hemorrhage and edema, MRI without contrast had specificity, PPV, NPV, PL, and NL of 0%, 100%, 0%, 0.60%, and 6%, respectively. For SCI with combination of hemorrhage and edema, MRI without contrast had specificity, PPV, NPV, PL, and NL of 0%, 100%, 0%, 0.60%, and 6%, respectively. For SCI with combination of hemorrhage and edema, MRI with contrast had specificity, PPV, NPV, PL, and NL of 100%, 100%, 100%, 100%, and 0%, respectively.
<u>Karpova et al.,</u> (2013) Canada Case series N=17	Population: Cervical Myelopathy (n=17): Mean age=54.5yr; Gender: males=13, females=4. Intervention: To assess the intra- and inter-observer reliability of commonly used quantitative magnetic resonance imaging (MRI) measures such as transverse area (TA), compression ratio (CR), maximum canal compromise (MCC), maximum spinal cord compression (MSCC). Outcome Measures: Intra-class correlation coefficients (ICC).	 The mean±SD for intra-observer ICC was 0.88±0.1 for MCC, 0.76±0.08 for MSCC, 0.92±0.07 for TA, and 0.82±0.13 for CR. Additionally, inter-observer ICC was 0.75±0.04 for MCC, 0.79±0.09 for MSCC, 0.80±0.05 for CR, and 0.86±0.03 for TA.

Author Year		
Country		
Research Design	Methods	Outcome
Score		
Total Sample Size		
Switzerland Case Control N=47	Population: SCI (n=24): Mean age=49.7±19.8yr; Gender: males=19, females=5; Level of injury: C=12, T=9, L=2, S=1; Mean time since injury=45.6±20.7d; AIS scale: A=6, B=5, C=4, D=9. Healthy controls (n=23): Mean age=35.9±10.9yr; Gender: males=13, females=10; Level of injury: N/A; Time since injury=N/A; AIS scale: N/A. Intervention: All participants underwent magnetic resonance imaging (MRI) using a 3T system. Sequences included TI-weighted 3D magnetization Prepared Rapid Acquisition Gradient-Echo (IMPRAGE) of the whole brain extending to the cervical C5 level (field of view=224 X 256, matrix=224 X 256, repetition time/echo (TR/TE)=2420/4.18 ms, bandwidth=150 hz/pixel). Microstructural changes were assessed with three different 3D multi-echo fast low-angle shot (FLASH) gradient-echo sequences. Participants were assessed at baseline, 2, 6, 12, and 24 mo post- SCI. Outcome Measures: Cross- sectional spinal cord area (SCA); anterior-posterior width (APW); left-right width (LRW); lower extremity motor score (LEM); Microstructural parameters: magnetization transfer (MT); longitudinal relaxation rate (R1); effective transverse relaxation rate (R2).	 There was a significant association between baseline APW and LEM at 2 mo (r²=0.97, p=0.03). There was also a significant association between RI of the cord and pinprick score at 12 mo (r²=0.71, p=0.04). SCA (p=0.004) and APW (p=0.005) were significantly lower compared to controls at baseline. There was no significant difference in LRW between the two groups at baseline (p=0.67). There were no significant differences in microstructural measures of MT, R1, and R2 in the cervical cord when comparing SCI to controls (p>0.05).
<u>Dalkilic et al.</u> (2018) Canada	Population: SCI (n=36): Mean age=42.1±13yr; Gender: males=23, females=13; Level of injury: C=36; Mean time since injury=12.87hr;	1. Hematoma length (p=0.006), CSF effacement length (p=0.007), and cord expansion length (p=0.031) differed significantly between
Observational	AIS: A=20, B='/, C=9.	individuals with baseline AIS
N _{Initial} =36 N _{Final} =34	Intervention: Individuals were assessed using magnetic resonance imaging (MRI) pre-	significant differences in IMLL and MCC (p>0.05).

Author Year		
Country Research Design	Methods	Outcome
Score		
Total Sample Size		
	operatively with a 1.5T MRI system. Conventional MRI sequences included were fast-spin-echo (FSE) TI-weighted sagittal image with repetition time/echo time(TR/TE) =533/10ms, T2-weighted sagittal image with TR/TE=3000/84ms, FSE T2-weighted axial image with TR/TE=3390/98ms, and T2 gradient echo weighted axial image with TR/TE=1030/24ms. AIS grade was assessed pre-operatively (baseline) and 6mo post-injury. Outcome measures below were assessed by MRI. Outcome Measures: Intramedullary lesion length (IMLL); hematoma length; CSF effacement length; cord expansion length; maximal cord compression (MCC).	 A logistic regression model of MRI found that only CSF effacement and hematoma length were statistically significant predictors of baseline AIS grade (p<0.05). The model had 72.2% accuracy for AIS grade classification. IMLL (p=0.031) and hematoma length (p=0.002) were significantly higher in individuals who converted their AIS grade within 6mo compared to those who did not. CSF effacement, cord expansion length, and MCC did not differ significantly between the two groups (p>0.05).
<u>Aarabi et al., (2017)</u> USA Observational N=100	Population: SCI (n=100): Mean age=39.5±16.8yr; Gender: males=89, females=11; Level of injury: C=100; Time since injury: ≤12hr=51, >12hr=49; AIS: A=52, B=29, C=19. Intervention: Individuals who underwent surgical spinal cord decompression were included in this longitudinal, retrospective study. AIS grade was re-evaluated at 6wk, 3mo, 6mo, and 12mo following discharge. Post- operative magnetic resonance imaging (MRI) was used to assess outcome measures. Outcome measures below were assessed by MRI. Outcome Measures: AIS grade conversion at 6mo post-surgery; Intramedullary lesion length (IMLL); evidence of decompression; presence of intramedullary bematomas	 IMLL was a significant predictor of AIS impairment scale grade conversion at 6mo in univariate (p<0.001) and sole predictor in multivariate (OR=0.950, CI: 0.931- 0.969) analysis. The multivariate model predicted 5% and 40% decreases in the odds of AIS scale grade conversion for 1-and 10mm increases in IMLL, respectively. Univariate analysis showed that the presence of intramedullary and evidence of decompression were significantly related to AIS grade conversion at 6mo (p<0.001), however, were not significant in multivariate analysis (stepwise multiple logistic regression) (p>0.05).
<u>Martinez-Perez et</u> <u>al., (2017)</u>	Population : Incomplete SCI (n=86): Mean age=47.6yr (range=18-87);	 LOE >36mm was significantly associated with poor neurological

Author Year		
Country Research Design Score	Methods	Outcome
Total Sample Size		
Canada Observational N=86	Gender: males=68, females=18; Level of injury: C=86; Time since injury=<72hr for all; AIS at admission: B=12, C=29, D=35, E=38. Intervention: This retrospective review examined individuals who presented with acute incomplete cervical SCI secondary to blunt trauma. Magnetic resonance imaging (MRI) was performed at initial diagnosis using a 1.5T system. Axial and sagittal planes had a slice thickness of 3mm. Image sequences included axial TI- weighted, T2-weighted, and gradient echo images, as well as sagittal TI-weighted, T2-weighted, and short tau inversion recovery (STIR). AIS assessments were done initial examination and lyr follow- up. Outcome measure below were assessed by MRI. Outcome Measures: Length of	outcome (i.e., no improvement in AIS). 2. There was no significant difference in intramedullary hemorrhage when comparing individuals who had AIS improvement and those who did not (p>0.05).
Matsushita et al., (2017) Japan Observational N=102	hemorrhage; AIS Population: SCI (n=102): Mean age=62.36yr (range=16-86); Gender: males=88, females=14; Level of injury: C=102; Time since injury=<72h for all AIS scale: A=32, B=15, C=42, D=13. Intervention: Individuals presenting with acute cervical SCI were included in the study. Magnetic resonance imaging (MRI) was performed using a 1.5T system with sagittal T2-weighted images (fast-recovery fast spin echo, echo train length=15, receiver bandwidth=150Hz/Px, matrix=384 X 229, section thickness=3mm, field of view=24cm). American Spinal Injury Association motor score (AMS) and modified Frankel D grade were assessed at admission and discharge.	 There was a significant negative correlation between ISI and AMS at both admission (r=-0.3766, p<0.001) and discharge (r=-0.4240, p<0.001) for individuals admitted within 1 day of SCI. There was also a significant negative correlation between ISI and AMS at both admission (r=- 0.6840, p<0.001) and discharge (r=- 0.5293, p<0.01) for individuals admitted 2-3 days of SCI. Receiver operating characteristic curve analysis determined an optimal ISI cut-off of 45mm for high versus low Frankel D score (i.e., not walking versus walking, respectively) in individuals who were admitted 2-3 days after SCI. With this cut-off, there was a significant positive correlation

Author Year			
Country			
Research Design	Methods		Outcome
Score			
Total Sample Size			
	Outcome Measures: Increased		between ISI and being able to walk
	intramedullary signal intensity (ISI);		(p<0.001).
	American Spinal Injury Association		
	score (AMS); Frankel D score.		
	Population : Complete SCI (n=10):	1.	There was no significant difference
	Mean age=55.4yr (range=23-'/9);		IN MSCC across the three groups
	Gender: males=8, females=2; Level	_	(p=0.085).
	of injury: $C=10$; time since	2.	Complete SCI showed significantly
	Injury- <izhr a-10.<="" ais="" all,="" for="" scale.="" td=""><td></td><td>higher MCC compared to the other</td></izhr>		higher MCC compared to the other
	Incomplete SCI (n=75): Mean	_	two groups (p<0.001).
	age-57.2yr (larige-20-67), Geruer.	3.	Intramedullary hemorrhage and
	injury: $C=75$: Time since injury=<12hr		edema had significantly greater
	for all: AIS scale: B=NR. C=NR. D=NR.		compared to incomplete SCI and
Song et al. (2016)	Neurologically intact (n=17): Mean		neurologically intact individuals
Korea	age=54.3yr (range=24-71); Gender:		(p<0.00]).
Observational	males=14, females=4; Level of injury:		
	C=17; Time since injury=<12hr for all;		
N=102	AIS scale: E=17.		
	Intervention: Medical records of		
	individuals who underwent		
	magnetic resonance imaging		
	(MRI) scans for suspected spinal		
	Outcome Measures: Maximum		
	spinal canal compression (MSCC)		
	maximum cord compression		
	(MCC); intramedullary lesion		
	length (IMLL); intramedullary		
	hemorrhage; spinal cord edema.		
	Population: SCI (n=108): Mean	1.	All outcome measures showed
	age=48.9±20.9yr; Gender: NR; Level		statistically significant positive
	of injury: C=108, L=16; Time since		correlations with NLI.
Zohrabian et al	injury=<'/2hr for all; AIS scale: NR.	2.	Upper (r=0.72, p<0.01) and lower
(2016)	Intervention: Individuals suspected		(r=0.61, p<0.01) boundaries of
	of SCI underwent neurological		hemorrhage had the strongest
Observational	quality magnetic resonance	-	Dland Altman analysis
	imaging (MRI) of the cervical spine	3.	biand-Aluman analysis
11-100	Outcome Measures: upper and		boundary of cord hemorrhade
	lower boundaries of edema: lesion		demonstrated the best agreement
	epicenter; upper and lower		with NLI (p<0.01).
	boundaries of cord hemorrhage;		
	neurological level of injury (NLI).		
<u>Schroeder et al.,</u>	Population: Increased T2 signal	1.	Individuals in the increased signal
(2016)	<i>(n=32):</i> Mean age: 57.1yr; Gender:		group had more severe

Author Year Country Research Design	Methods	Outcome
Score Total Sample Size		
USA Observational N=75	males=19, females=13; Injury etiology: fall=24, motor vehicle accident=6, diving=; 2 Level of severity: mean Glasgow coma scale=15.0, mean injury severity score=22.2. <i>No increase in T2 signal (n=43):</i> Mean age: 57.3yr; Gender: males=31, females=12; Injury etiology: fall=31, motor vehicle accident=8, diving=2, sports=1, other=1; Level of severity: mean Glasgow coma scale=15.0, mean injury severity score=16.8. Intervention: Individuals with	 neurological injury on AMS at admission (p=0.01). 2. Throughout the wk, individuals with increased signal intensity maintained stable AMS whereas individuals without increased signal intensity on MRI declined within the first wk (p=0.07). 3. Individuals with increased signal intensity tended to experience less severe mechanism of injury through less major (p=0.09) and minor (p=0.15) injuries. 4. Incidence of surgical treatment and
	Intervention: Individuals with central cord syndrome were stratified based on presence of signal intensity on magnetic resonance imaging (MRI). Physician progress notes were reviewed for outcomes 1 wk post-injury. Outcome Measures: American Spinal Injury Association (ASIA) Motor Score (AMS), Surgery, Severity of injury.	 A. Incidence of surgical treatment and decompression was similar between both groups (p=0.99, p=0.10). Individuals with increased signal intensity on MRI spent longer time in the ICU (p=0.001), but there was no difference in length of stay (p=0.22). There was no significant relationship of age, sex, injury severity score, stenosis, or surgery with AMS (p>0.05).
<u>Mabray et al</u> (2016) USA Observational N=25	Population: SCI (n=25): Mean age=38.32±15.74yr; Gender: males=17, females=8; Level of injury: T=24, without detectable injury=1; Mean time since injury=14.68±18.56hr; AIS at admission: A=11, B=2, C=, D=6, E=5. Intervention: This retrospective cohort study examined individuals who presented with acute thoracic or thoracolumbar SCI. MRI was performed at initial diagnosis using a 1.5T system. Images included sagittal TI (slice thickness=3 mm, time to repetition/time to echo (TR/TE)=520-630/9-15ms, echo train length (ETL)=3, field of view (FOV)=30 cm2, acquisition matrix=512 X 512), sagittal T2 (slice	 Sagittal grade (rho=-0.83, p<0.001), LEI (rho=-0.83, p<0.001), and BASIC (rho =-0.93, p<0.001) showed significant negative correlations with AIS at discharge. There were no significant correlations between AIS score at discharge and both MCC and MSCC (p>0.05). In a multi-variable optimal scaled regression model, BASIC was the only statistically significant predictor of AIS at discharge (p=0.001).

Author Year		
Country		
Research Design	Methods	Outcome
Score		
Total Sample Size		
	thickness=3mm, TR/TE=3100- 4000/105-120ms, ETL=19-21, FOV=30cm2, acquisition matrix=512 X 512), and axial T2 sequences (slice thickness=4 mm, TR/TE=4000-4800/102-120 ms, ETL=25, FOV=18 cm, acquisition matrix=512 X 512). AIS was assessed upon admission and at discharge. Outcome measures below were assessed by MRI. Outcome Measures: Brain and Spinal Cord Injury Center (BASIC) grade; Maximum canal compromise (MCC); Maximum spinal cord compression (MSCC);	
	greatest longitudinal extent of injury (LEI); sagittal grade.	
Wang et al., (2016) China Observational N=35	Population: SCI (n=35): Mean age=57.2yr (range=42-69); Gender: males=21, females=14; Level of injury: C=35; Time since injury=NR; AIS scale: NR. Intervention: Imaging was performed on a 3.0T dual gradient superconductor MR with a gradient strength of 40mT/m and switching rate of 150mT/ms ⁻¹ . Sagittal flair-T ₁ W ₁ (repetition time/echo time(TR/TE)=3200/116.8ms, section thickness=3mm, interlamellar spacing=1mm, field of view (FOW)=24X24 mm, image matrix=320X224, number of signals averaged (NEX)=2), sagittal FRFSE- T ₂ W ₁ (TR/TE=2698/25.8ms, section thickness=3 mm, interlamellar spacing=1mm, FOV=240X240, image matrix=320X224, NEX=2), and axial FRFSE-T ₂ W ₁ (TR/TE=3200/121ms, section thickness=4mm, interlamellar spacing=0.5mm, bandwidth=41.7kHz, FOV=180X180mm, image matrix=288X224, NEX=4)	 There were no significant correlations between MRI and motor score, sensory score, or AIS before and after surgery (p>0.05).

Author Year Country Research Design Score Total Sample Size	Methods	Outcome
	sequences were acquired for all individuals. MRI grading was performed by two radiologists; Grade 1, 2, and 3 constituted no static compression on spinal cord (no abnormal signals on sagittal T_1W_1 and T_2W_1), compression on spinal cord (normal sagittal T_1W_1 + increased signal intensity (ISI) on sagittal T_2W_1), and obvious compression on spinal cord (Low signal intensity on T_1W_1 + ISI on T_2W_1 , respectively. Outcome measures were evaluated before surgery and 1 yr after surgery. Outcome Measures: Motor score; sensory score; American Spinal Injury Association index score (AIS).	
Wilson et al., (2012) Canada Case Series N=376	 Population: SCI (n=736): Mean age=43.2yr; Gender: males=294, females=82; Level of severity: AIS A=136, AIS B=63, AIS C=58, AIS D=119; Mean time since injury=76.1hr. Intervention: Individuals received MRI following traumatic SCI. Outcomes were assessed at baseline and 1yr follow-up. Outcome Measures: MRI signal, American Spinal Injury Association Impairment Scale (AIS), American Spinal Injury Association Motor Scale (AMS), Functional Independence Measure (FIM). 	 MRI signal characteristics consistent with spinal cord edema or hemorrhage predicted worse functional outcome. Parameters for predicting FIM motor score at lyr (b=50.28) were MRI signal (m=4.83, p=0.19), AIS grade (m=12.47, p<0.01), AMS score (m=9.17, p<0.01), and age (m=-0.33, p<0.01). Parameters for predicting FIM score at lyr (b=-2.93) were MRI signal (m=- 0.29, OR=0.75, p=0.54), AIS grade (m=1.36, OR=3.90, p<0.01), AMS score (m=1.35, OR=3.86, p<0.01), and age (m=-0.03, OR=0.97, p<0.01).
<u>Miyanji et al.,</u> (2007) Canada Observational N=100	Population: SCI (n=100): Mean age=45yr (range=17-96); Gender: males=79, females=21; Level of injury: C=100; Median time since injury=24hr; AIS scale: A=26, B- D=51, E=22, Unknown=1. Intervention: Individuals with SCI were recruited as participants for this prospective study. Comparisons were made among injury severity American Spinal Injury Association (ASIA) A. B-D.	 Frequency of intramedullary hemorrhage, edema, and cord swelling were more common in ASIA A versus ASIA B-D (p<0.001). Moreover, they were directly correlated with SCI severity (p<0.001). MCC and MSCC were more substantial in ASIA A compared to ASIA B-D (r²=0.222, p=0.005; r²=0.171, p=0.002, respectively).

Author Year		
Country Research Design Score	Methods	Outcome
Total Sample Size		
	and E. All individuals underwent MRI. Neurological assessment was done at baseline (time of MRI) and last clinical visit. Outcome Measures: Maximal canal compromise (MCC); maximum spinal cord compression (MSCC); lesion length; American Spinal Injury Association (ASIA) motor score; presence of: intramedullary hemorrhage, edema, cord swelling (focal widening of cord).	 Lesion length was significantly greater in ASIA A compared to ASIA B-D (r²=0.343, p=0.005). Step-wise multivariate regression found that the best model for predicting baseline ASIA included MCC, MSCC, and cord swelling. Step-wise multivariate regression adjusted for baseline ASIA motor score found that only intramedullary hemorrhage and cord swelling were predictive of follow-up ASIA motor score.
Boldin et al., (2006) Austria Observational N=29	Population: SCI with Hemorrhage (n=17): Mean age=35.4±12.3yr; Gender: NR; Level of injury: C=17; Median time since injury=10(range=5-12)d; AIS scale: A=8, B=8, C=1. SCI without Hemorrhage (n=12): Mean age=55±19.3yr; Gender: NR; Level of injury: C=12; Median time since injury=6(range=5-11)d; AIS scale: B=3, C=7, D=2. Intervention: Participants with closed cervical SCI were recruited for this prospective study. MRI was performed on all participants. Neurological impairment was assessed at time of MRI and at median follow up of 35 mo (range=24-65). Outcome Measures: hemorrhage length; edema length; American Spinal Injury Association (ASIA) classification; recovery rate (RR) of the following: motor score; sensory score; pin prick score.	 Participants with spinal cord hemorrhage had significantly longer edema (p=0.002) and more severe ASIA scores (p<0.001). Participants with complete motor SCI were significantly more likely to have indications of hemorrhage compared to those with incomplete lesions (p<0.001). Baseline motor, pin prick, and sensory scores were significantly lower in the presence of hemorrhage (p=0.006; p=0.001; p=0.001, respectively). RR of pin prick and sensory scores were significantly lower in participants with hemorrhage (p=0.008; p=0.011, respectively). There was no significant difference in RR of motor score between hemorrhage (p>0.05). ANOVA revealed statistically different edema lengths among the levels of ASIA score (p=0.001). ASIA A was statistically longer than ASIA C, D, and E. There was no difference in edema length when comparing ASIA A to B (p>0.05). Hemorrhage length was longer in complete SCI (ASIA A) compared to incomplete SCI (ASIA B-E) (p=0.002).

Author Year Country Research Design Score Total Sample Size	Methods	Outcome
		 Logistics regression revealed that length of edema was the only predictive measure for all participants (hemorrhage and no hemorrhage). Each mm increase in edema resulted in a 1.15 (1.03-1.29) increased rate of retaining a complete SCI (p=0.022).
Shepard & Bracken (1999) USA Observational N=191	Population: SCI (n=191): Mean age=NR; Gender: males=162, females=29; Level of injury: NR; Time since injury: ≤9hr=99, >9hr=92; Injury severity: Complete=75, Incomplete=87, Normal=29. Intervention: This was a retrospective review of participants from another study. Participants who received MRI within 72hr of injury were included in this study. Participants were assessed neurologically based on responses to pin prick, light touch, and motor function at baseline and at 6wk follow-up. Outcome Measures: Positive MRI response of: hemorrhage, contusion, edema; neurological assessment (see intervention).	 Participants characterized with a complete SCI based on radiologic and neurologic examination were significantly more likely to have spinal cord hemorrhage compared to those classified as neurologically normal on motor function but with impaired sensation (p=0.01). There was no significant difference in the presence of contusion and edema when comparing complete SCI to incomplete SCI (p>0.05). Participants whose MRI imaging indicates hemorrhage or contusion are significantly more likely to have lower motor, pin, and touch scores at baseline (p<0.05). However, there are no significant differences for participants with edema (p>0.05). There was no statistical difference in recovery of pin, motor, and touch scores at 6wk when comparing participants who have hemorrhage, contusion, or edema (p>0.05). A logistic regression adjusting for neurological examination scores at baseline found that there were no significant increased odds for a complete spinal cord injury in the presence of hemorrhage, contusion or edema (p>0.05). There was no significant difference in motor function and sensory recovery at 6wk when comparing participants with hemorrhage, contusion, and edema (p>0.05).

Author Year			
Country			
Research Design	Methods		Outcome
Score Total Samplo Sizo			
Total Sample Size	Dopulation: Conviced Myolongthy	1	Abnormal T2 by parint ansity MDI
Research Design Score Total Sample Size	Methods Population: Cervical Myelopathy (n=55): Mean age: 29.2yr; Gender: males=36, females=19; Injury etiology: motor vehicle accident=32, diving accident=11, fall=9, other=3; Level of injury range: C2-T1; Level of severity: Frankel grade A=32, B=9, C=8, D=6; Time since injury range: <17hr. Intervention: Individuals with traumatic cervical myelopathy underwent magnetic resonance imaging (MRI) of the spine. Outcomes were assessed at admission and at the most recent follow-up visit an average of 18.5mo. Outcome Measures: Frankel Grade, Medical Research Council (MRC) motor grades, Spinal cord length and diameter, Presence of hematoma, edema, and hemorrhage.	1. 2. 3. 4. 5. 6. 7. 8.	Outcome Abnormal T2-hyperintensity MRI images representing edema were present in 54 of 55 individuals. Rostrocaudal length of signal changes, but not spinal cord swelling or maximal diameter, was significantly correlated with poor neurological function on Frankel Grades at admission (p=0.001). Abnormal T2-hypointensity representing intra-axial hemorrhage was present in 22 individuals (40%), all which had poor Frankel Grade A or B injuries on admission and this was significantly different than those without hypointense signals (p=0.001). Rostrocaudal length of hemorrhage signal changes were significantly correlated with worse Frankel Grades after MRI (p=0.049), but not at follow-up. Rostrocaudal length of edema, but not maximal diameter or length, was significantly correlated with worse Frankel Grade at the follow- up (p=0.036). The strongest predictor of neurological outcome was Frankel Grade at presentation (p<0.001). Hemorrhage on MRI scans were correlated with motor-complete injury at admission and associated with poor long term Frankel Grade scores.
		8.	Grade at admission to follow-up for rostrocaudal length of hematoma (p=0.028), compression via extra- axial hematoma (p=0.077) and rostrocaudal length of edema (p=0.071).
		9.	I here was a significant negative correlation between length of spinal edema on MRI and total

Author Year			
Country			
Research Design	Methods		Outcome
Score			
Total Sample Size			
			motor score improvements on MRC (p=0.041).
<u>Flanders et al.,</u> (<u>1996)</u> USA Case Series N _{Initial} =118 N _{Final} =104	Population: <i>SCI (n=104):</i> Mean age: 34 yr; Gender: males=91, females=13; Injury etiology: motor vehicle accident (n=49), fall (n=27), sport (n=8), other (n=20); Level of injury: cervical; Level of severity: AIS A=43, B=23, C=28, D=10; Time since injury: <1wk. Intervention: Individuals with cervical SCI who underwent MRI were retrospectively analyzed for prediction of motor recovery.	1. 2. 3.	Individuals with spinal cord hemorrhage had significantly worse upper and lower motor scores at the time of injury and at 12mo (p<0.001). Individuals without spinal cord hemorrhage had little recovery of lower extremity function. Upper extremity function improved in all individuals (p<0.001); however, individuals without hemorrhage showed the largest improvements.
	Outcome Measures: American Spinal Injury Association Motor Score.		
<u>Takahashi et al.,</u> (1993) Japan Observational N=49	 Population: SCI (n=29): Mean age=47.7 yr; Gender: males=42, females=7. Intervention: Individuals received MRI within 1wk of SCI. Some individuals (n=25) received follow- up MRI. All individuals were classified based on MRI pattern: Type 0 for TI/T2WI isointensity, Type I for TIWI isointensity and T2WI hyperintensity, Type II for TIWI hyperintensity, and T2WI hyperintensity, and Type III for TIWI hyperintensity. Outcome Measures: MRI pattern, Signal intensity, Cord compression, Recovery. 	 1. 2. 3. 4. 5. 6. 	Individuals presented with compression of varying degrees: none (n=5), minimal (n=7), moderate (n=22), or severe (n=15). Most common causes were subluxation (n=17) and fracture (n=11). Individuals initially presented with the following MRI patterns: Type 0 (n=13), Type I (n=30), Type II (n=1), and Type III (n=5). They later presented with the following patterns: Type 0 (n=4), Type I (n=8), and Type II (n=13). Individuals showed recovery of varying degrees: none (n=22), some recovery (n=16), or complete recovery (n=11). Initial MRI pattern was associated with recovery as follows: Type 0 had 92%, Type I had 53%, and both Types II and III had 0%. Subsequent MRI pattern was associated with recovery as follows: Type 0 had 75%, Type I had 63%, and Type II had 69%. Initial T2WI high intensity area was associated with recovery as follows:

Author Year		
Country		
Research Design	Methods	Outcome
Score		
Total Sample Size		
		vertebral bodies was 88%, and >2 vertebral bodies was 20%.
		 Subsequent T2WI high intensity area was associated with recovery as follows: <1 vertebral body was 100%, 1-2 vertebral bodies was 67%, and >2 vertebral bodies was 0%.
		8. Compression was associated with recovery as follows: severe had 33%, moderate had 55%, minimal had 71%, and none had 100%.
Schaefer et al (1992) USA Observational N=57	Population: Group 1 (n=21): Mean age=27.2yr; Gender: NR; Level of injury: C=21; Time since injury=NR; Mean American Spinal Injury Association (ASIA) motor score: 12.1. Group 2 (n=17): Mean age=43.5yr; Gender: NR; Level of injury: C=17; Time since injury=NR; Mean ASIA motor score=28.6. Group 3 (n=19): Mean age=38.4yr; Gender: NR; Level of injury: C=19; Time since injury=NR; Mean ASIA motor score=38.3. Intervention: Individuals with closed cervical spinal cord injuries were recruited as participants for this study. All participants underwent MRI. Neurological assessment (ASIA motor score) was assessment at baseline (time of MRI) and at follow-up. Participants were divided into three groups based on MRI findings. Group 1 consisting of patterns characteristic of intramedullary hematoma; group 2 had intramedullary edema over more than one spinal region without hemorrhage; group 3 had intramedullary edema restricted to one spinal segment or less. Outcome Measures: ASIA motor score; Median percent recovery.	 Group 1 had no statistically significant improvement in ASIA motor scores at follow-up (p>0.05). Group 2 had significantly greater median recovery score compared to group 1 (p<0.02). Group 3 had significantly greater median recovery score compared to both group 1 and 2 (p<001; p<0.01, respectively). Baseline median ASIA motor score was significantly greater than group 1 (p<0.001). However, there was no difference in baseline ASIA motor score when comparing group 3 to 2 (p>0.05).

Discussion

MRI is the imaging modality of choice in SCI due to its high psychometric and prognostic value.

Yasin et al., show that MRI is a highly sensitive (97%) and accurate technique (95%). MRI demonstrated high psychometrics in SCI with or without edema and hemorrhage, except when trying to asses for combination of edema and hemorrhage without contrast as Ghasemi et al., (2015) demonstrate. Karpova et al., (2013) demonstrate high intraobserver correlation for quantitative MRI measurements related to the spine.

MRI also showed strong prognostic value in predicting the initial injury and course of injury based on signal intensity. Selden et al., (1999) showed that hemorrhage on MRI scans were correlated with motor-complete injury at admission and associated with poor long-term Frankel Grade scores. Initial MRI pattern was associated with recovery. MRI signal characteristics consistent with spinal cord edema or hemorrhage predicted worse functional outcome as Wilson et al., demonstrate. The study conducted by Flanders et al., (1996) found that individuals with spinal cord hemorrhage had significantly worse upper and lower motor scores at the time of injury and at 12 months. Miyanji et al., (2007) demonstrate that the frequency of intramedullary hemorrhage, edema, and cord swelling were more common in American Spinal Injury Association A versus American Spinal Injury Association B-D. Moreover, they were directly correlated with SCI severity. Only one study by Wang et al., (2016) showed no significant correlation between MRI findings and motor, sensory or American Spinal Injury Association score.

Conclusion

There is level 4 evidence (from one case series study; (Karpova et al., 2013), and two observational studies; (Ghasemi et al., 2015, Yasin et al., 2017) that MRI has strong interobserver correlation, sensitivity, specificity, predictive value, and diagnostic accuracy in detecting and evaluating SCI in individuals.

There is level 5 evidence (from one case series study; (Schroeder et al., 2016) that the incidence of surgical treatment and spinal decompression is not significantly different between individuals based on the presence of signal intensity on an MRI.

There is conflicting level 3 evidence (from one cohort study; (Mabray et al., 2016), one case control study; (Seif et al., 2018), two case series; (Flanders et al., 1996), (Wilson et al., 2012), and six observational studies; (Aarabi et al., 2017, Schaefer et al., 1992, Selden et al., 1999, Song et al., 2016, Takahashi et al., 1993, Zohrabian et al., 2016) and level 5 evidence (from one observational study (Wang et al., 2016) that MRI is effective in determining microstructural measurements and can reliably predict AIS classification, motor score and status and progression of injury in individuals with SCI and controls.

There is level 5 evidence (from one cohort study; (Martinez-Perez et al., 2017) that early MRI has prognostic value in its ability to evaluate ligamentous injury and edema which are predictors of poor neurologic outcome.

There is level 5 evidence (from one observational study; (Miyanji et al., 2007) that MRI can be used to detect hemorrhage, edema, and cord swelling in individuals with SCI. A greater number

of positive detections were significantly associated with increased SCI severity and American Spinal Injury Association classification.

There is level 5 evidence (from two observational studies; (Boldin et al., 2006; Shepard & Bracken 1999) that MRI may be used to predict complete SCI given the detection of hemorrhage and edema in individuals with SCI.

There is level 5 evidence (from one observational study; (Dalkilic et al., 2018) that MRI could be used to assess hematoma length and predict AIS classification at baseline.

There is level 5 evidence (from one observational study; (Matsushita et al., 2017) that MRI is effective in detecting spinal microstructures which can be used to effectively predict American Spinal Injury Association motor scores, and Frankel D scores in individuals with SCI.

Key Points

MRI is an effective diagnostic tool to assess damage to microstructures within the spinal cord as well as detecting other indications of damage such as hemorrhage and edemas.

MRI may be reliably used to predict an individual's injury severity, American Spinal Injury Association score, motor score, AIS, and neurologic outcome given an SCI.

5.1 Spinal Cord Injury Without Radiographic Abnormality

In some instances, individuals with an SCI may not present with any radiographic abnormalities. Although this is considered less common it is still worth noting. Spinal cord injury without radiological abnormality accounts for approximately 10% of SCIs and can be an indication for MRI. The few studies which have found no radiographic abnormalities are presented in Table 2 below.

Author Year Country Research Design Score Total Sample Size	Methods		Outcome
<u>Martinez-Perez et</u> <u>al., (2017)</u> Canada Observational N=48	Population: Spinal Cord Injury Without Radiographic Abnormality (SCIWORA) (n=48): Mean age=54±18.3yr; Gender: males=40, females=8; Level of injury: C=48; Time since injury: ≤72hr; American Spinal Injury Association (ASIA): A=2, B=5, C=15, D=26.	1.	There were no significant associations with any of the outcome measures and neurological improvement, with the exception of MRI lesion length. In particular, shorter lesions on MRI were associated

Table 2. The use of MRI in Individuals Without Radiographic Abnormalities

Author Year		
Country		
Research Design	Methods	Outcome
Score Total Sample Size		
	Intervention: Individuals who were	with neurological improvement
	Intervention: Individuals who were admitted to hospital with cervical SCI, received MRI imaging within 72 hr, diagnosed with SCIWORA, and had at least 1 yr of follow-up were included in this retrospective study. MRI was performed using a 1.5T magnet with axial TI-weighted images, T2-weighted images, and gradient echo (GRE); and sagittal TI- weighted images, T2-weighted images, and short TI inversion recovery sequences. Neurological status was assessed using the ASIA impairment scale at baseline and 1-yr follow-up. Neurological improvement was defined as the improvement of at least 1 point on the ASIA Impairment Scale. Outcome Measures : Disk integrity; swelling; intramedullary hematoma; extramedullary hematoma; edema; cervical canal stenosis; lesion length;	with neurological improvement (p=0.01).
	maximal canal; maximal spinal cord compromise.	
<u>Ouchida et al</u> (2016) Japan Observational N=68	Population: Spinal Cord Injury Without Radiographic Abnormality (SCIWORA) (n=68): Mean age=62(16- 93)yr; Gender: males=52, females=16; Level of injury: C=68; Time since injury: ≤4hr; AIS: A=6, B=7, C=24, D=31. Intervention: Individuals diagnosed with SCIWORA were included in this study. T2-weighted sagittal images were acquired using a 1.5T MRI for all individuals. Additionally, individuals underwent a delayed MRI 2 weeks after injury. Outcome measures were assessed at diagnosis and 1-yr follow- up. Outcome Measures: Increased signal intensity (ISI) grade and range; prevertebral hyper-intensity range (PVH); Neurological status: Japanese Orthopaedic Association scoring system (JOA score).	 There was no significant correlation between JOA and ISI grade and range at admission (p=0.11, r=-0.19; p=0.10, r=-0.20, respectively). However, there was a significant correlation between JOA and PVH at admission (p<0.001, r=-0.55). There were significant correlations between JOA and ISI grade and range, as well as PVH on delayed MRI imaging (p<0.001, r=-0.49; p<0.05, r=-0.24; p<0.001, r=-0.46, respectively).

Discussion

Only two studies meeting our inclusion criteria examined individuals diagnosed with SCI without radiographic abnormality (Martinez-Perez et al., 2017, Ouchida et al., 2016). Martinez-Perez et al., (2017) assessed individuals who had normal CT scans and did not find any significant associations between physiological outcome and neurological improvement, except for in lesion length as seen on MRI. In this case, shorter lesion length was significantly associated with neurological improvement. Ouchida et al., (2016) found that MRI signal intensity was not significantly associated with the Japanese Orthopaedic Association scoring system, but prevertebral hyper-intensity range was. The first study suggests that an early MRI may pick up traumatic lesions in cases where CT has been negative. These studies also loosely suggest that MRI is less useful as a prognostic indicator of outcome and status in individuals diagnosed with SCI without radiographic abnormality compared to those with SCI who demonstrate radiographic abnormalities.

Conclusions

There is level 5 evidence (from one observational study; (Martinez-Perez et al., 2017) that an early MRI may have prognostic value in individuals with SCI without CT evidence of trauma.

There is level 5 evidence (from an observational study (Ouchida et al., 2016) that MRI may not be an effective diagnostic or prognostic indicator of injury in individuals diagnosed with SCI without radiographic abnormality.

Key Points

For individuals with SCI without radiographic abnormality MRI may not be useful in determining current injury severity or predicting outcome following injury.

6 Diffusion Tensor Imaging (DTI)

DTI is a novel imaging technique, which is an extension of diffusion weighted imaging. It has the potential to identify intact nerve fibre tracts and has been used to image the brain for a variety of conditions. It is currented used mainly as a research tool when imaging the spine and has not been widely implemented in mainstream clinical practice. However, early studies have shown that it holds considerable promise in predicting the severity of spinal cord injury.

Author Year		
Country		
Research Design	Methods	Outcome
Score		
Total Sample Size		
Research Design Score Total Sample Size	Methods Population: SCI (n=18): Mean age=46.72±14.47yr; Gender: males=14, females=4; Level of injury: C=18; Time since injury=9.83±11.45yr; AIS: A=3, B=2, C=6, D=7. Healthy Controls (n=10): Mean age=33yr (range=21-49); Gender: males=6, females=4. Intervention: Diffusion fiber tractography was performed on all participants with a Philips 3-T scanner using a 16-channel neurovascular coil. Images were acquired using multi-slice pulsed gradient spin echo sequence, b=0 and 500s/mm2, 16 diffusion- weighted directions that sample a prolate tensor, TR/TE=6300/63ms, SENSE factor=2, 96X96X40 volume matrix, 1.5X1.5X3mm3 resolution (axial sections of 3mm thickness; zero-filled to 0.57X0.57X3mm3), and matrix size=256X256X40. The entire length of the spinal cord serves as the field of view. Regions of interest included the following regions relative to injury (RRI); epicenter RRI (ERRI); superior RRI (SRRI) defined as the region located above the superior edge of the ERRI up to approximately one vertebral level; inferior RRI (IRRI) defined as the region below the inferior edge of the ERRI to the length of approximately one vertebral level; Diffusion Tensor Imaging (DTI) indices were also averaged over all RRI to create an all-level region (AL) value for each index. DTI indices were measured for each spinal cord column region (left, right, dorsal, and ventral columns) within each	 All DTI indices of different RRIs differed significantly (p<0.05). DTI indices did not differ between spinal cord columns (i.e., left, right, dorsal, and ventral columns) (p>0.05). There were no significant relationships between DTI indices and total ISNCSCI scores from different spinal cord columns (p>0.05). For the AL region, individuals with SCI had significantly decreased and increased FA and RD compared to normal controls, respectively (p<0.05). There was no significant difference in AD in the AL region (p>0.05).
	International Standard of	
	Neurological Classification for SCI	

Table 3. Use of Diffusion Tensor Imaging in Those With SCI

Author Year Country	Mathada	Outcome
Research Design Score	Methods	Outcome
Total Sample Size		
	(ISNCSCI) total score was determined for each SCI participant by summing the total motor score (upper and lower motor extremity scores) and total sensory score (left and right light touch). Outcome Measures : DTI indices: Fractional Anisotropy (FA); axial diffusivity (AD); radial diffusivity.	
D'Souza et al., (2017) India Case Control N=50	Population: SCI (n=20): Mean age=35.95±10.86yr; Gender: males=14, females=6; Level of injury: C=20; Time since injury=≤7d; AIS: NR. Healthy Controls (n=30): Mean age=35.90±10.13yr; Gender: males=20, females=10. Intervention: All participants underwent Diffusion Tensor Imaging (DTI) using a single shot echo planar imaging (EPI) sequence (b-value=0,700 s/mm ²) using 20 diffusion encoding directions. Images were acquired using Sagittal TI: repetition time/echo time(TR/TE)=450/9.5ms; Sagittal T2:TR/TE–3630/104ms; Axial TI: TR/TE–450/9.6ms and Axial T2: TR/TE-500/15 ms. Images were acquired in the axial plane with an image matrix of 128X128, 5mm slice thickness with no inter-slice gap, and a 280X280mm field of view. SCI participants were reassessed clinically 1-2 mo after imaging. Outcome Measures: Mean diffusivity (MD); fractional anisotropy (FA); Frankel grading system score (FGS).	 At the level of injury, FA was significantly lower for SCI when compared to healthy controls (p<0.001). However, MD was significantly higher for SCI at the level of injury when compared to healthy controls (p<0.001). There were no significant differences in MD and FA above and below the injury when comparing SCI to healthy controls (p>0.05). There was a statistically significant positive correlation between FA values at the level of injury and FGS (r=0.86, p<0.001). In contrast, there was no significant correlation between MD at the level of injury and FGS (p>0.05). Qualitative analysis of the cord on tractography revealed that 12 cases suggested disruption in cord integrity.
Shanmuganathan et al., (2017) USA Case Control N _{Initial} =45 N _{Final} =31	Population: SCI (n=16): Median age=53(range=20-79)yr; Gender: males=13, females=3; Level of injury: C=16; Time since injury=≤5d; The International Standard of Neurological Classification for SCI	 FA was significantly lower in SCI when compared to lower (p<0.001), mid (p<0.001), and upper (p<0.001) regions in healthy controls. AD was significantly lower in SCI when compared to lower (p<0.001),

Author Year			
Country			
Research Design	Methods		Outcome
Score Total Sample Size			
Total Sample Size	(ICNCCCI) at discharge: A=C D=2		mid (p<0.001) and upper (p<0.001)
	C=3 D=6		regions in healthy controls
	Healthy Controls (n=15): Median	3	RD was significantly higher in SCI
	age=46(range=26-69)vr: Gender:	0.	when compared to mid ($p<0.001$)
	males=12, females=3.		and upper (p<0.001) regions of
	Intervention: All participants		healthy controls. There was no
	underwent Diffusion Tensor		significant difference in RD when
	Imaging (DII) with a I.5-1 Avanto		comparing SCI to the lower region
	four-channel neck array using	,	of healthy control ($p>0.05$).
	single-shot echo planar imaging	4.	in MD when comparing SCI to all
	(EPI) sequence at a TE/TR of		regions of healthy controls
	87/2800 msec. Sagittal T2 (echo		(p>0.05).
	time/ repetition time	5.	Pearson correlations revealed
	(TE/TR)=109/4000 ms), fluid		significant correlations between
	(FLAIR) (TE/TR=102/8000 msec		MD and the presence of
	echo train length (ETL)=13), and		nemorrnagic contusions (r=0.42,
	axial T2 and T2*, three-dimensional		(r=0.66, p<0.05) and SCIM $(r=0.64)$
	[3D] susceptibility weighted		p<0.05).
	imaging (SWI) (TE/TR: 16/30msec,	6.	There was a significant correlation
	included For SCL Pegions of		between FA and age (r=-0.55,
	interest included areas of edema		p<0.05).
	(confirmed by T2 and STIR	7.	AD was significantly correlated
	sequences) and hemorrhage		with presence of nemorrhadic contusion $(r=0.42, p<0.05)$ ISNCSCI
	(confirmed by SWI and 12*		motor score (r= 0.76 , p< 0.00), is resci-
	regions of interest included upper		SCIM (r=0.77, p<0.01).
	(lower brainstem-lower C2), mid	8.	RD was significantly correlated
	(upper C3-lower C5), and lower		with age (r=0.5, p<0.05) and
	(upper C6-lower T1) regions. The		ISNCSCI motor score (r=0.53,
	International Standard of	0	Provoj. Stop wise regression revealed MD
	(ISNCSCI) was assessed at	9.	$(r^2=0.89 \text{ p}=0.002) \text{ AD} (r^2=0.0.93)$
	discharge and at 1-yr follow-up.		$p<0.001$), and RD ($r^2=0.86$, $p=0.014$)
	Outcome Measures: ISNCSCI motor		were significant predictors of
	score; Spinal cord independence		ISNCSCI motor score at the 1-year
	measure III (SCIM); Radial diffusivity		follow-up for participants with or
	(RD); axiai αιπυsivity (AD); mean		injury EA was not a significant
	anisotropy (FA)		predictor in the model (p>0.05)
		10	MD. AD. FA. and RD were not
			significant predictors of SCIM at 1-
			year follow-up for both
			hemorrhagic and non-

Author Year		
Country		
Research Design	Methods	Outcome
Score		
Total Sample Size		
		hemorrhagic spinal cord injury (p>0.05).
Wang et al., (2016) China Observational N=35	Population: SCI (n=35): Mean age=57.2yr (range=42-69); Gender: males=21, females=14; Level of injury: C=35; Time since injury=NR; AIS scale: NR. Intervention: Imaging was performed on a 3.0T dual gradient superconductor MR with a gradient strength of 40mT/m and switching rate of 150mT/ms ⁻¹ . Difusion Tensor Imaging (DTI) consisted of a single-shot spin- echo-planar sequence (b value=1000 s/mm ² , repetition time/echo time=8000/87.6ms, section thickness=4mm, interlamellar spacing=0mm, bandwidth=250 kHz, field of view=180X180mm, image matrix=130X128, number of signals averaged=2. DTI grading was performed by two radiologists; Grade 1, 2, and 3 constituted mixed signal in lesion area but complete and continuous fiber bundle, abnormal signal and disordered fiber bundle in local lesion, interrupted fiber bundle, respectively. Outcome measures were evaluated before surgery and 1 yr after surgery. Outcome Measures: Motor score; sensory score; American Spinal Injury Association (ASIA) index	 There was a significant correlation between AIS and DTI grading before and after surgery (p<0.05, r=0.475; p<0.01, r=-0.529, respectively). There was also a significant correlation between DTI grading and motor score, as well as sensory score after surgery (p=<0.01, r=0.492; p<0.05, r=0.476, respectively). There were no significant correlations between DTI grading and motor score and sensory score before surgery (p>0.05).
<u>Kim et al., (2015)</u> Korea	Population: SCI (n=17): Mean age=47.0±13.4yr; Gender: males=11, females=6; Level of injury: C=17; Time since injury=13.1±19.9mo;	 SCI had significantly lower FA in all three regions (lateral, dorsal, ventral) and all levels (at injury, above injury, below injury)
Case Control N=38	Etiology: Vertebral fracture=5, compressive myelopathy=3,	compared to healthy controls (p<0.05).
	degenerative myelopathy=1, transverse myelopathy=2, cervical myelopathy=1, spinal cord	2. SCI had significantly higher ADC in all three regions (lateral, dorsal, ventral) and at two levels (injury

Author Year		
Country		
Research Design	Methods	Outcome
Score		
Total Sample Size		
	contusion=4. ossification of	level and below injury) compared
	posterior longitudinal ligament=1;	to healthy controls (p<0.05).
	AIS: A=4, B=1, C=2, D=10.	However, there was no significant
	Healthy Controls (n=21): Mean	difference in ADC above the injury
	age=38.5±15.7vr: Gender: males=13.	for all three regions (lateral, dorsal,
	females=8.	ventral) (p>0.05).
	Intervention: All participants were	3. Peak systolic vCSF was
	assessed with Diffusion Tensor	significantly higher in SCI at the
	Imging (DTI) using a Tim 3-Tesla	injury level when compared to
	MR scanner with a 12-channel	healthy controls (p<0.05).
	head coil and 4-channel neck coil.	4. Peak diastolic cCSF was
	Axial images had the following	significantly lower in SCI below the
	parameters; repetition time/echo	injury when compared to healthy
	time (TR/TE)=5100/77ms; number	controls (p<0.05).
	of signals averaged (NEX)=10; b-	5. In SCI participants, FA was
	value=0, 750s mm-2; diffusion	significantly correlated with
	direction=6; image matrix=140 X	systolic and diastolic vCSF above
	36; field of view (FOV)=140X36	the injury and at the level of the
	nimz, sice thickness-5 mm, total	injury (p<0.05). Systolic and
	resolution=1021025mm3	diastolic vCSF at the injury and
	handwidth=916 Hz per nixel: and	below the injury were significantly
	total acquisition time(TA)=6min	correlated with changes in FA at
	and 2s. Sagittal T2-weighted	the injury level and above the
	images were acquired using a T2-	
	weighted fast spin-echo (FSE)	6. I nere were no significant
	sequence. In the SCI participants,	Correlations between ADC and
	DTI indices were measured at the	VCSF(p>0.03).
	level of injury, above the injury (at	7. In SCI, there were significant
	least one vertebral segment	hegalive correlations between
	above), and below the injury (at	latoney and right latoral EA (r-
	least one vertebral segment	0.560 p=0.046 r=-0.676 p=0.041
	below). DTI indices of healthy	left lateral FA (r=-0.676 p =0.011 r=-
	controls were measured at C2-C3,	0.675, p=0.011). and dorsal FA (r=-
	against above the injuny at the	0.641, p=0.018; r=-0.652, p=0.016).
	level of injury and below the injury	8. There was also a significant
	of SCI respectively. DTL indices	negative correlation between the
	were assessed along the lateral	right tibial nerve SEP latency and
	dorsal, and ventral regions of the	dorsal FA (p=0.010), as well as the
	spinal cord in all participants.	left tibial nerve and both left lateral
	Outcome Measures: AIS; American	FA (r=-0.632, p=0.021) and dorsal FA
	Spinal Injury Association (ASIA)	(r=-0.695, p=0.008).
	motor and sensory scores;	9. There was a significant positive
	modified Barthel index score (MBI);	correlation between left tibial
	Spinal cord independence	nerve SEP amplitude and ventral
	measure III (SCIM); somatosensory	FA (r=0.585, p=0.036).

Author Year		
Country		
Research Design	Methods	Outcome
Score		
Total Sample Size		
	evoked potentials (SEP) latency and amplitude; DTI indices: Intramedullary fractional anisotropy (FA), apparent diffusion coefficient (ADC); cerebrospinal fluid velocity (vCSF);	 FA of the ventral area at the level of injury was significantly correlated with ASIA sensory score (r=0.687, p=0.009). FA below the level of injury significantly correlated with AIS (r=-0.773, p=0.014) and SCIM (r=0.680, p=0.044). There was no significant correlation between both FA and ADC and ASIA motor score or MBI
Koskinen et al (2013) Finland Case Control N=68	Population: SCI group (n=28): Mean age: 59.9yr; Gender: males=22, females=6; Injury etiology: motor vehicle accident (n=10), fall (n=12), sports (n=3), assault (n=1), other (n=2); Level of injury: cervical=27, thoracic=1; Level of severity: AIS A=7, B=1, C=3, D=16, E=1; Mean time since injury: 13.1yr. Healthy Control (CG) group (n=40): Mean age: 40.6yr; Gender: males=20, females=20. Intervention: Researchers aimed to quantify the association between diffusion tensor imaging (DTI) parameters in individuals with cervical traumatic SCI. Outcome Measures: Apparent Diffusion Coefficient (ADC), Fractional Anisotropy (FA), Radial Diffusivity (RD), International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI), Functional Independence Measure (FIM).	 The FA values of the SCI were group were significantly lower than those of the CG group (p<0.001). ADC and RD values of the SCI group were significantly higher than those in the CG group (p<0.0001 and p<0.00001, respectively). In the SCI group, the FA values were positively correlated with the motor (p<0.01) and sensory (p<0.001) scores of ISNCSCI. In the SCI group, the FA values were positively correlated with the motor subscale of FIM (p<0.01). DTI revealed SCI pathology, which was undetectable using conventional MRI.
<u>Ellingson et al.,</u> (2008b) USA Case Control N=8	Population: SCI (n=4): Mean age=42.25±14.04yr; Gender: NR; Level of injury: C=3, T=1; Time since injury=13±11.09yr; AIS: A=1, B=1, C=2. Healthy Controls (n=4): Mean age=29±4.85yr; Gender: NR Intervention: Diffusion Tensor Imaging (DTI) images were obtained for all participants using a	 FIS images of SCI participants were less clear compared to healthy control vis-à-vis presence of distinct gray matter shape. Additionally, there seemed to be a changes in shape and decreases in size of the spinal cord in SCI comparted to controls.

Author Year		
Country		
Research Design	Methoas	Outcome
Total Sample Size		
	head coil and a 15T scanner Twelve	2 SCI had significantly lower TADC
	axial slices throughout the upper	LADC, and MD in gray matter (p=0.008; p=0.033; p=0.007.
	EPI/SE (dual spin echo) pulse	respectively), white matter
	repetition time/echo time	respectively), as well as individual
	(TR/TE)=6000/88.1ms, field of view (FOV)=200 mm, and number of signals averaged (NEX)=4 (T2-	white matter regions including the dorsal funiculus (p=0.039; p<0.001; p<0.001 respectively) and lateral
	weighted image only) for each participant. Images were taken	funiculi (pp<0.001; p=0.01; p<0.001, respectively).
	rostral to the injury site and in equivalent regions for SCI and	3. There was no significant difference in TADC, LADC, and MD for
	healthy participants, respectively. Morphology analysis was done by	cerebrospinal fluid (p>0.05).4. SCI had significantly smaller whole
	Measures: Fractional anisotropy	cord and white matter tract cross- sectional area compared to
	diffusion coefficient (LADC);	controls (p=0.001; p<0.001, respectively). There was no
	coefficient (TADC); mean diffusivity (MD); cross-sectional area (CA).	significant difference in cross- sectional area of gray matter (p=0.109).
		5. Frontal and sagittal diameters were significantly smaller in SCI
		(p<0.001; p=0.009, respectively), suggesting spinal cord atrophy.
	Population: SCI (n=10): Median age=37yr (range=25-67); Gender: NR; Level of injury: C=6, T=5; Time	 Controls had higher whole cord FA compared to SCI, especially in white matter dense areas
	since injury=>4yr; Injury type:	(p<0.001).
	complete=4, incomplete=6.	2. Subjects with complete SCI had
Ellingson et al	age=25yr (range=25-67); Gender: NR	throughout the whole spinal cord
<u>(2008a)</u>	Intervention: Diffusion Tensor	compared to subjects with
USA	Imaging (DTI) images of the entire	incomplete SCI (p=0.011; p=0.037,
Case Control	all participants using a CTL Spine	no significant difference in LADC
N=23	Coil with anterior neck coil	(p>0.05).
	attachment. Images were acquired	3. Subjects with lower cervical lesions
	size=128X128, number of signals	and MD throughout the spinal
	averaged (NEX)=1, FOV=200mm,	cord compared with thoracic
	and a section thickness of 5mm	lesions (p=0.012; p=0.019,
	weighted images (DWIs) were	A TADC LADC and MD word
	acquired with b=1500s/mm ² in 25	significantly higher at the lesion in

Author Year Country		_
Research Design Score	Methods	Outcome
Total Sample Size		
	equidistant directions. A single T2- weighted (T2WI) (b =0s/mm ²) was acquired for each section. Outcome Measures : Fractional anisotropy (FA); Transverse apparent diffusion coefficient (TADC); longitudinal apparent diffusion coefficient (LADC); mean diffusivity (MD).	 SCI compared to healthy controls (p<0.05 for all). Completeness of injury and level of injury were not significant factors for changes in LADC, TADC, and MD in the cervical spinal cord (p>0.05). There were no significant interactions between lesion level and vertebral level, as well as completeness of injury and vertebral level for TADC (p>0.05). However, FA was significantly lower in subjects with complete SCI compared to those with incomplete SCI (p<0.001).
		7. Comparisons between SCI with upper cervical lesions and healthy controls revealed significantly lower LADC, TADC, and MD for SCI at C1, C2, and C3 (p<0.05).
Shanmuganathan et al., (2008) USA Case Control N=28	Population : SCI (n=20): Mean age=45.7±17.7yr; Gender: males=18, females=2; Level of injury: C=20; Time since injury=2hr-15d; The International Standard of	 ADC was significantly lower in the SCI group in the upper (p=0.013), mid (p<0.001), and lower (p<0.001) regions when compared to healthy controls.
	Neurological Classification for SCI at discharge: A=5, B=2, C=3, D=6. Healthy Controls (n=8): Mean age=34.2±10.7yr; Gender: males=6, females=2. Intervention: All participants underwent Diffusion Tensor Imaging (DTI) with a 1.5T Avanto scanner with a 12-channel head and four-channel neck array using an echo-planar imaging (EPI) sequence at a repetition time/echo time (TR/TE) =8000/76ms and a resolution of 128X128 over a 20cm field of view (FOV). Images included sagittal T2 (TR/TE=4000/109ms), fluid- attenuated inversion recovery (TE/TR/echo train=8000/102ms/13), and axial T2 and T2* images.	2. There were no significant differences in FA when comparing SCI to healthy controls at all three regions (p>0.05).
		 3. SCI showed significantly lower RA in the mid region when compared to healthy controls (p=0.037). There was no significant difference in RA for the upper and lower regions (p>0.05). 4. There were no significant
		 4. There were no significant differences in VR when comparing SCI to healthy controls at all three regions (p>0.05). 5. Whole cord Diffusion Tenor Imaging parameters showed significantly lower ADC and RA in participants with SCI (p<0.001; p=0.022, respectively).

Author Year		
Country Research Design Score Total Sample Size	Methods	Outcome
	Regions of interest included upper (lower brainstem-lower C2), mid (upper C3-lower C5), and lower (upper C6-lower T1) regions. Medical records were reviewed to determine the extent of neurological deficit (e.g., quadriplegia, hemiplegia, radiculopathy, etc.). Outcome Measures : Apparent diffusion coefficient (ADC); fractional anisotropy (FA); relative anisotropy (RA); volume ratio (VR).	 Whole cord ADC, FA, and RA were significantly lower in SCI with hemorrhage compared to controls (p<0.001; p=0.0037; p<0.001, respectively). However, VR was significantly higher (p=0.008). Only whole cord ADC and RA were significantly higher in quadriplegic SCI compared to healthy controls (p<0.001; p=0.023, respectively). ADC, FA, and RA parameters at the injury site of all SCI were significantly lower compared to whole-cord healthy control Diffusion Tensor Imaging parameters (p=0.031; p<0.001; p<0.001, respectively). Whereas VR was significantly higher at the injury site (p<0.001).
Facon et al., (2005) France Case Control N=26	 Population: SCI group (n=15): Mean age: 53.9yr; Gender: males=10, females=5; Injury etiology: metastasis (n=4), degenerative (n=6), spondylodiscitis (n=5); Level of injury: C1-L1; Time since injury: >4yr. Healthy Control (CG) group (n=11): Mean age: 36.7yr; Gender: males=8, females=3. Intervention: Researchers aimed to evaluate the diagnostic accuracy of diffusion tensor imaging (DTI) in individuals with SCI and healthy controls. Comparisons were also made against T2-weighted fast spin echo (FSE). Outcome Measures: Apparent Diffusion Coefficient (ADC), Fractional Anisotropy (FA). 	 For the healthy subjects, averaged ADC values ranged from 0.00096mm²/s to 0.00105mm²/s and averaged FA values ranged from 0.745 to 0.751. Ten individuals had decreased FA (0.67), and one had increased FA values (0.831); only two individuals had increased ADC values (1.03). There was a statistically significant difference in the FA values CG and SCI groups (p=0.012). FA had a much higher sensitivity (SE=73.3%) and specificity (SP=100%) in spinal cord abnormalities detection compared with T2-weighted FSE imaging (SE=46.7%, SP=100%) and ADC (SE=13.4%, SP=80%).

Discussion

Studies have showed that the diagnostic value/psychometrics of different DTI measures such as apparent diffusion coefficient, fractional anisotropy, radial diffusivity, axial diffusivity, mean diffusivity, relative anisotropy, and volume ratio are highly statistically significant. In 2005,

Facon et al., (2005) found that there was a statistically significant difference in the fractional anistrophy values between healthy controls and those with SCI groups. In particular, fractional anistrophy had a much higher sensitivity (SE=73.3%) and specificity (SP=100%) in spinal cord abnormalities detection compared with T2-weighted FSE imaging (SE=46.7%, SP=100%) and ADC (SE=13.4%, SP=80%). Koskinen et al., (2013) reveal that DTI revealed SCI pathology, which was undetectable using conventional MRI. Numerous studies including those by Choe et al., D'Souza et al., (2017), Shanmuganathan et al., (2008), Shanmuganathan et al., (2017), Kim et al., (2015), Koskinen et al., (2013) demonstrate a statistical difference in fractional anistrophy, axial diffusivity, radial diffusivity, apparent diffusion coefficient, relative anisotropy, and volume ratio values between healthy controls and those with SCI. Shanmuganathan et al., (2008) demonstrates that whole cord relative anisotropy, fractional anistrophy, and relative anisotropy were significantly lower in SCI with hemorrhage compared to controls, while volume ratio was significantly higher. Interestingly, they note that there was no significant differences in fractional anistrophy when comparing SCI to healthy controls. Overall, DTI parameters show considerable diagnostic value, in particular, in its high sensitivity and specificity and in detecting pathology not seen on MRI.

The evidence behind using DTI as a prognostication tool is mixed. Various studies have examined different DTI measures such as apparent diffusion coefficient, fractional anisotropy, radial diffusivity, axial diffusivity, mean diffusivity and their relationships with a number of functional and injury classification scores including International Standards for Neurological Classification of SCI, Functional Independence Measure, Spinal cord independence measure III, Frankel grading system score, American Spinal Injury Association motor score, modified Barthel index score and Abbreviated Injury Scale. Fractional anistrophy has shown promise as a prognostication tool.

In a 2013 case control study by (Koskinen et al.) the fractional anistrophy values in the SCI group were positively correlated with the motor and sensory scores of The International Standard of Neurological Classification for SCI. Moreover, the fractional anistrophy values in the same group were positively correlated with the motor subscale of Functional Independence Measure.

In 2017, (D'Souza et al.) found that there was a statistically significant positive correlation between fractional anistrophy values at the level of injury and Frankel grading system score. In contrast, there was no significant correlation between mean diffusivity at the level of injury and Frankel grading system score.

Shanmuganathan et al., (2017) demonstrate that axial diffusivity was significantly correlated with presence of hemorrhagic contusion, The International Standard of Neurological Classification for SCI, and spinal cord independence measure III. Mean diffusivity, axial diffusivity, and radial diffusivity were significant predictors of The International Standard of Neurological Classification for SCI motor score at the 1-year follow-up for participants with or without hemorrhage spinal cord injury. However, fractional anisotropy was not a significant predictor in the model. Moreover, mean diffusivity, axial diffusivity, fractional anistrophy, and radial diffusivity were not significant predictors of spinal cord independence measure III at 1-year follow-up for both hemorrhagic and non-hemorrhagic spinal cord injury.

Meanwhile, Choe et al., found that there were no significant relationships between DTI indices and total International Standard of Neurological Classification for SCI scores from different spinal cord columns.

Conclusion

There is level 3 evidence (from one case control study; Choe et al., 2017) that there may be no significant relationship between DTI incidences and total International Standard of Neurological Classification for SCI scores either at baseline or follow-up in individuals with SCI.

There is level 3 evidence (from one case control study; (D'Souza et al., 2017) that there may be a significant positive relationship between fractional anisotropy and Frankel grading system scores, but no relationship between mean diffusivity and Frankel grading system scores.

There is level 3 evidence (from seven case control studies; Choe et al., 2017, (D'Souza et al., 2017, Ellingson et al., 2008a, Facon et al., 2005, Kim et al., 2015, Shanmuganathan et al., 2008, Shanmuganathan et al., 2017) that DTI may be an effective tool to measure microstructure abnormalities in individuals with an SCI compared to healthy controls.

There is level 3 evidence (from one case control study; (Shanmuganathan et al., 2017) that axial diffusivity may be positively correlated with the presence of hemorrhagic contusion, International Standard of Neurological Classification for SCI motor scores, and spinal cord independence measure III at both baseline and follow-up.

There is level 3 evidence (from one case control study; (Shanmuganathan et al., 2017) that axial diffusivity, radial diffusivity, and mean diffusivity may be a significant predictor of International Standard of Neurological Classification for SCI motor scores, but not spinal cord independence measure III scores, for both individuals with and without SCI.

There is conflicting level 3 evidence against (from one case control study; (Ellingson et al., 2008a), and one observational study; (Wang et al., 2016) and level 3 evidence for (from one case control study; (Koskinen et al., 2013) that DTI grading may have prognostic value in determining motor and sensory scores in individuals with SCI.

Key Points

DTI has value as a diagnostic imaging tool to evaluate microstructural and spinal cord abnormalities in individuals with SCI.

There is conflicting evidence as to which observations from DTI can be used to predict current and future outcomes.

DTI may be effective for predicting relationships between different SCI abnormalities within individuals.

7 Summary

There is level 4 evidence (from one case series study; (Karpova et al., 2013), and two observational studies; (Ghasemi et al., 2015, Yasin et al., 2017) that MRI has strong interobserver correlation, sensitivity, specificity, predictive value, and diagnostic accuracy in detecting and evaluating SCI in individuals.

There is level 5 evidence (from one case series study; (Schroeder et al., 2016) that the incidence of surgical treatment and spinal decompression is not significantly different between individuals based on the presence of signal intensity on an MRI.

There is conflicting level 3 evidence (from one cohort study; (Mabray et al., 2016), one case control study; (Seif et al., 2018), two case series; (Flanders et al., 1996), (Wilson et al., 2012), and six observational studies; (Aarabi et al., 2017, Schaefer et al., 1992, Selden et al., 1999, Song et al., 2016, Takahashi et al., 1993, Zohrabian et al., 2016) and level 5 evidence (from one observational study (Wang et al., 2016) that MRI is effective in determining microstructural measurements and can reliably predict AIS classification, motor score and status and progression of injury in individuals with SCI and controls.

There is level 5 evidence (from one cohort study; (Martinez-Perez et al., 2017) that early MRI has prognostic value in its ability to evaluate ligamentous injury and edema which are predictors of poor neurologic outcome.

There is level 5 evidence (from one observational study; (Miyanji et al., 2007) that MRI can be used to detect hemorrhage, edema, and cord swelling in individuals with SCI. A greater number of positive detections were significantly associated with increased SCI severity and American Spinal Injury Association classification.

There is level 5 evidence (from two observational studies; (Boldin et al., 2006; Shepard & Bracken 1999) that MRI may be used to predict complete SCI given the detection of hemorrhage and edema in individuals with SCI.

There is level 5 evidence (from one observational study; (Dalkilic et al., 2018) that MRI could be used to assess hematoma length and predict AIS classification at baseline.

There is level 5 evidence (from one observational study; (Matsushita et al., 2017) that MRI is effective in detecting spinal microstructures which can be used to effectively predict American Spinal Injury Association motor scores, and Frankel D scores in individuals with SCI.

There is level 5 evidence (Martinez-Perez et al., 2017) that an early MRI may have prognostic value in individuals with SCI without CT evidence of trauma.

There is level 5 evidence (from an observational study (Ouchida et al., 2016) that MRI may not be an effective diagnostic or prognostic indicator of injury in individuals diagnosed with SCI without radiographic abnormality.

There is level 3 evidence (from one case control study; Choe et al., 2017) that there may be no significant relationship between DTI incidences and total International Standard of Neurological Classification for SCI scores either at baseline or follow-up in individuals with SCI.

There is level 3 evidence (from one case control study; (D'Souza et al., 2017) that there may be a significant positive relationship between fractional anisotropy and Frankel grading system scores, but no relationship between mean diffusivity and Frankel grading system scores.

There is level 3 evidence (from seven case control studies; Choe et al., 2017, (D'Souza et al., 2017, Ellingson et al., 2008a, Facon et al., 2005, Kim et al., 2015, Shanmuganathan et al., 2008, Shanmuganathan et al., 2017) that DTI may be an effective tool to measure microstructure abnormalities in individuals with an SCI compared to healthy controls.

There is level 3 evidence (from one case control study; (Shanmuganathan et al., 2017) that axial diffusivity may be positively correlated with the presence of hemorrhagic contusion, International Standard of Neurological Classification for SCI motor scores, and spinal cord independence measure III at both baseline and follow-up.

There is level 3 evidence (from one case control study; (Shanmuganathan et al., 2017) that axial diffusivity, radial diffusivity, and mean diffusivity may be a significant predictor of International Standard of Neurological Classification for SCI motor scores, but not spinal cord independence measure III scores, for both individuals with and without SCI.

There is conflicting level 3 evidence against (from one case control study; (Ellingson et al., 2008a), and one observational study; (Wang et al., 2016) and level 3 evidence for (from one case control study; (Koskinen et al., 2013) that DTI grading may have prognostic value in determining motor and sensory scores in individuals with SCI.

References

- Aarabi B, Sansur CA, Ibrahimi DM, Simard JM, Hersh DS, Le E, ... Akhtar-Danesh N. Intramedullary lesion length on postoperative magnetic resonance imaging is a strong predictor of ASIA impairment scale grade conversion following decompressive surgery in cervical spinal cord injury. Clinical Neurosurgery 2017;80:610-620.
- Boldin C, Raith J, Fankhauser F, Haunschmid C, Schwantzer G, Schweighofer F. Predicting neurologic recovery in cervical spinal cord injury with postoperative MR imaging. Spine (Phila Pa 1976) 2006;31:554-9.
- Choe AS, Sadowsky CL, Smith SA, van Zijl, PC, Pekar JJ, Belegu V. Subject-specific regional measures of water diffusion are associated with impairment in chronic spinal cord injury. Neuroradiology 2017;59(8):747-758.
- D'Souza MM, Choudhary A, Poonia M, Kumar P, Khushu S. Diffusion tensor MR imaging in spinal cord injury. Injury 2017;48:880-884.
- Dalkilic T, Fallah N, Noonan VK, Salimi Elizei S, Dong K, Belanger L, ... Kwon BK. Predicting Injury Severity and Neurological Recovery after Acute Cervical Spinal Cord Injury: A Comparison of Cerebrospinal Fluid and Magnetic Resonance Imaging Biomarkers. Journal of Neurotrauma 2018;35:435-445.
- Ellingson BM, Ulmer JL, Kurpad SN, Schmit BD. Diffusion tensor MR imaging in chronic spinal cord injury. AJNR Am J Neuroradiol 2008a;29:1976-82.
- Ellingson BM, Ulmer JL, Schmit BD. Morphology and morphometry of human chronic spinal cord injury using diffusion tensor imaging and fuzzy logic. Ann Biomed Eng 2008b;36:224-36.
- Facon D, Ozanne A, Fillard P, Lepeintre JF, Tournoux-Facon C, Ducreux D. MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol 2005;26:1587-94.
- Flanders AE, Spettell CM, Tartaglino LM, Friedman DP, Herbison GJ. Forecasting motor recovery after cervical spinal cord injury: value of MR imaging. Radiology 1996;201:649-55.
- Ghasemi A, Haddadi K, Shad AA. Comparison of diagnostic accuracy of MRI with and without contrast in diagnosis of traumatic spinal cord injuries. Medicine (United States) 2015;94:e1942.
- Karpova A, Arun R, Davis AM, Kulkarni AV, Mikulis DJ, Sooyong C, . . . Fehlings MG. Reliability of quantitative magnetic resonance imaging methods in the assessment of spinal canal stenosis and cord compression in cervical myelopathy. Spine (Phila Pa 1976) 2013;38:245-52.
- Kim SY, Shin MJ, Chang JH, Lee CH, Shin YI, Shin YB, Ko HY. Correlation of diffusion tensor imaging and phase-contrast MR with clinical parameters of cervical spinal cord injuries. Spinal Cord 2015;53:608-614.
- Koskinen E, Brander A, Hakulinen U, Luoto T, Helminen M, Ylinen A, Ohman J. Assessing the state of chronic spinal cord injury using diffusion tensor imaging. J Neurotrauma 2013;30:1587-95.
- Mabray MC, Talbott JF, Whetstone WD, Dhall SS, Phillips DB, Pan JZ, ... Ferguson AR. Multidimensional analysis of magnetic resonance imaging predicts early impairment in thoracic and thoracolumbar spinal cord injury. Journal of Neurotrauma 2016;33:954-962.
- Martinez-Perez R, Munarriz PM, Paredes I, Cotrina J, Lagares A. Cervical Spinal Cord Injury without Computed Tomography Evidence of Trauma in Adults: Magnetic Resonance Imaging Prognostic Factors. World Neurosurgery 2017;99:192-199.
- Matsushita A, Maeda T, Mori E, Yuge I, Kawano O, Ueta T, Shiba K. Can the acute magnetic resonance imaging features reflect neurologic prognosis in patients with cervical spinal cord injury? Spine Journal 2017;17:1319-1324.
- Miyanji F, Furlan JC, Aarabi B, Arnold PM, Fehlings MG. Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome--prospective study with 100 consecutive patients. Radiology 2007;243:820-7.

- Ouchida J, Yasutsugu Y, Keigo I, Yoshito K, Tomohiro M, Masaaki M, . . . Kato F. Delayed Magnetic Resonance Imaging in Patients With Cervical Spinal Cord Injury Without Radiographic Abnormality. Spine (03622436) 2016;41:E981-E986.
- Schaefer DM, Flanders AE, Osterholm JL, Northrup BE. Prognostic significance of magnetic resonance imaging in the acute phase of cervical spine injury. J Neurosurg 1992;76:218-23.
- Schroeder GD, Hjelm N, Vaccaro AR, Weinstein MS, Kepler CK. The effect of increased T2 signal intensity in the spinal cord on the injury severity and early neurological recovery in patients with central cord syndrome. Journal of Neurosurgery: Spine 2016;24:792-796.
- Seif M, Curt A, Thompson AJ, Grabher P, Weiskopf N, Freund P. Quantitative MRI of rostral spinal cord and brain regions is predictive of functional recovery in acute spinal cord injury. NeuroImage: Clinical 2018;20:556-563.
- Selden NR, Quint DJ, Patel N, d'Arcy HS, Papadopoulos SM. Emergency magnetic resonance imaging of cervical spinal cord injuries: clinical correlation and prognosis. Neurosurgery 1999;44:785-92; discussion 792-3.
- Shanmuganathan K, Gullapalli RP, Zhuo J, Mirvis SE. Diffusion tensor MR imaging in cervical spine trauma. AJNR Am J Neuroradiol 2008;29:655-9.
- Shanmuganathan K, Zhuo J, Chen HH, Aarabi B, Adams J, Miller C, . . . Mirvis SE. Diffusion Tensor Imaging Parameter Obtained during Acute Blunt Cervical Spinal Cord Injury in Predicting Long-Term Outcome. Journal of Neurotrauma 2017;34:2964-2971.
- Shepard MJ, Bracken MB. Magnetic resonance imaging and neurological recovery in acute spinal cord injury: observations from the National Acute Spinal Cord Injury Study 3. Spinal Cord, 1999;37(12):833-837.
- Song KJ, Ko JH, Choi BW. Relationship between magnetic resonance imaging findings and spinal cord injury in extension injury of the cervical spine. European Journal of Orthopaedic Surgery and Traumatology 2016;26:263-269.
- Takahashi M, Izunaga H, Sato R, Shinzato J, Korogi Y, Yamashita Y, Sakae T. Correlation of sequential MR imaging of the injured spinal cord with prognosis. Radiat Med 1993;11:127-38.
- Wang K, Wang WT, Wang J, Chen Z, Song QX, Chen SY, ... Shen HX. Compared study of routine magnetic resonance imaging and diffusion tensor tractography on the predictive value of diagnosis and prognosis in acute cervical spinal cord injury. Journal of Acute Disease 2016;5:328-332.
- Wilson JR, Grossman RG, Frankowski RF, Kiss A, Davis AM, Kulkarni AV, ... Fehlings MG. A clinical prediction model for long-term functional outcome after traumatic spinal cord injury based on acute clinical and imaging factors. J Neurotrauma 2012;29:2263-71.
- Yasin A, Saeed U, Munir M. Magnetic Resonance Imaging (MRI) diagnostic accuracy in acute spinal column injuries. Pakistan Journal of Medical and Health Sciences 2017;11:971-972.
- Zohrabian VM, Parker L, Harrop JS, Vaccaro AR, Marino RJ, Flanders AE. Can anatomic level of injury on MRI predict neurological level in acute cervical spinal cord injury? British Journal of Neurosurgery 2016;30:204-210.

Abbreviations

- ASIA American Spinal Injury Association
- CT Computed Tomography
- DTI Diffusion Tensor Imaging
- MRI Magnetic Resonance Imaging
- SCI Spinal Cord Injury