Pain Following Spinal Cord Injury

Swati Mehta PhD
Robert Teasell MD FRCPC
Eldon Loh MD FRCPC
Christine Short MD FRCPC
Dalton L Wolfe PhD
Brooke Benton BSc RDH
Jane TC Hsieh MSc
## Key Points

Pain post SCI has a significant effect of quality of life.

Post-SCI pain is common and often severe beginning relatively early post-injury.

Post-SCI pain is most commonly divided into neuropathic or musculoskeletal pain.

Massage may not be helpful for post-SCI neuropathic and musculoskeletal pain.

Osteopathy alone may not be helpful for post-SCI neuropathic pain.

Acupuncture may reduce post-SCI neuropathic and musculoskeletal pain.

Electrostimulation acupuncture is effective in improving neuropathic pain in SCI pain.

Regular exercise reduces post-SCI neuropathic and musculoskeletal pain.

A shoulder exercise protocol reduces post-SCI nociceptive shoulder pain intensity.

MAGIC wheels 2 gear wheelchair reduces nociceptive shoulder pain.

Hypnosis may reduce neuropathic and musculoskeletal pain intensity post SCI.

Biofeedback may reduce neuropathic and musculoskeletal pain intensity post SCI.

Cognitive behavioral therapy combined with pharmacological treatment may result in improvement in secondary outcomes among SCI individuals with chronic pain.


Visual imagery may reduce neuropathic pain post SCI.

Transcranial electrical stimulation is effective in reducing post SCI neuropathic pain.

Static field magnet may reduce nociceptive shoulder pain post SCI.

Transcutaneous electrical nerve stimulation may reduce pain at site of injury in patients with thoracic but not cervical injury.

Transcranial magnetic stimulation reduces post-SCI neuropathic pain.

Gabapentin and pregabalin improve neuropathic pain post SCI.

Combined osteopathy and pregabalin may improve pain post SCI.

Lamotrigine may improve neuropathic pain in incomplete spinal cord injury

Levetiracetam is not effective in reducing neuropathic pain post SCI.

Valproic acid does not reduce neuropathic pain post SCI.
<table>
<thead>
<tr>
<th>Medication/Method</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duloxetine</td>
<td>May improve neuropathic pain post SCI</td>
</tr>
<tr>
<td>Trazodone</td>
<td>Does not reduce post-SCI neuropathic pain</td>
</tr>
<tr>
<td>Lidocaine through a subarachnoid lumbar catheter and intravenous Ketamine</td>
<td>Improve post-SCI neuropathic pain short term.</td>
</tr>
<tr>
<td>Mexilitene</td>
<td>Does not improve SCI dysesthetic pain</td>
</tr>
<tr>
<td>Intrathecal Baclofen</td>
<td>Improves musculoskeletal pain post SCI and may help dyesthetic pain related to spasticity.</td>
</tr>
<tr>
<td>Motor point phenol block</td>
<td>Reduces spastic shoulder pain</td>
</tr>
<tr>
<td>Botulinum toxin injections for focal spasticity</td>
<td>Improves pain.</td>
</tr>
<tr>
<td>Intravenous morphine</td>
<td>Reduces mechanical allodynia</td>
</tr>
<tr>
<td>Tramadol</td>
<td>Reduces neuropathic pain</td>
</tr>
<tr>
<td>Alfentanil</td>
<td>Reduces chronic pain post SCI</td>
</tr>
<tr>
<td>Alfentanil is more effective in reducing wind up like pain post SCI than ketamine.</td>
<td></td>
</tr>
<tr>
<td>Oxycodone and anticonvulsants</td>
<td>May improve neuropathic SCI pain</td>
</tr>
<tr>
<td>Cannabinoids</td>
<td>Are a potential new treatment for post-SCI pain in need of further study.</td>
</tr>
<tr>
<td>Dronabinal</td>
<td>Is not effective in reducing pain post SCI</td>
</tr>
<tr>
<td>Intrathecal Clonidine alone does not appear to provide pain relief although it may be helpful in combination with Intrathecal Morphine.</td>
<td></td>
</tr>
<tr>
<td>Topical capsaicin</td>
<td>Reduces post-SCI radicular pain</td>
</tr>
<tr>
<td>Spinal cord stimulation</td>
<td>May improve post-SCI neuropathic and musculoskeletal pain.</td>
</tr>
<tr>
<td>Dorsal longitudinal T-myelotomy procedures</td>
<td>Reduce pain post SCI.</td>
</tr>
<tr>
<td>DREZ surgical procedure</td>
<td>Reduces pain post SCI.</td>
</tr>
</tbody>
</table>
# Table of Contents

Abbreviations ......................................................................................................................................... i

1.0 Introduction ........................................................................................................................................ 1

2.0 Incidence, Quality and Significance ................................................................................................. 1
  2.1 Incidence of Pain Post SCI ................................................................................................................ 1
  2.2 Impact on Quality of Life .................................................................................................................... 1
  2.3 Severe Pain and SCI Location ........................................................................................................... 2
  2.4 Natural History of SCI Pain .............................................................................................................. 2

3.0 Location and Quality of SCI Pain ........................................................................................................ 2

4.0 Classification of SCI Pain ..................................................................................................................... 3

5.0 Musculoskeletal or Mechanical Pain ................................................................................................... 4

6.0 Central or Neurogenic Dysesthetic Pain ............................................................................................. 5

7.0 Borderzone or Segmental Pain ............................................................................................................. 6

8.0 Psychological Factors .......................................................................................................................... 7
  8.1 Catastrophizing and Pain Post SCI .................................................................................................... 8

9.0 Non-Pharmacological Management of Post-SCI Pain ...................................................................... 8
  9.1 Massage ........................................................................................................................................... 9
  9.2 Osteopathy ...................................................................................................................................... 10
  9.3 Acupuncture ................................................................................................................................... 12
  9.4 Exercises for Post-SCI Pain ............................................................................................................ 15
  9.5 Exercises for Shoulder Pain ........................................................................................................... 17
  9.6 Behavioural Management of Pain Post SCI ...................................................................................... 20
    9.6.1 Hypnotic Suggestions ..................................................................................................................... 20
    9.6.2 Biofeedback .................................................................................................................................. 22
    9.6.3 Cognitive Behavioural Therapy ................................................................................................... 23
    9.6.4 Visual Illusion ................................................................................................................................ 26
  9.7 Transcranial Direct Current Stimulation Post SCI Pain .................................................................... 30
  9.8 Transcranial Electrical Stimulation Post SCI Pain ........................................................................... 34
  9.9 Static Magnetic Field Therapy Post SCI Pain ................................................................................... 36
  9.10 Transcutaneous Electrical Nerve Stimulation for Pain Post SCI .................................................... 37
  9.11 Transcranial Magnetic Stimulation ................................................................................................ 39

10.0 Pharmacological Management of Post-SCI Pain ............................................................................ 41
  10.1 Pharmacological Measures Overall .............................................................................................. 41
  10.2 Anticonvulsants in SCI Pain ........................................................................................................... 42
  10.3 Tricyclic Antidepressants in Post-SCI pain ..................................................................................... 53
  10.4 Anaesthetic Medications ................................................................................................................. 57

This review has been prepared based on the scientific and professional information available in 2013. The SCIRE information (print, CD or web site www.scireproject.com) is provided for informational and educational purposes only. If you have or suspect you have a health problem, you should consult your health care provider. The SCIRE editors, contributors and supporting partners shall not be liable for any damages, claims, liabilities, costs or obligations arising from the use or misuse of this material.


www.scireproject.com
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISA</td>
<td>ASIA Impairment Scale</td>
</tr>
<tr>
<td>BCM</td>
<td>Broad Compression Massage</td>
</tr>
<tr>
<td>BDI</td>
<td>Beck Depression Inventory</td>
</tr>
<tr>
<td>BPI</td>
<td>Brief Pain Inventory</td>
</tr>
<tr>
<td>BTX</td>
<td>Botulinum Toxin</td>
</tr>
<tr>
<td>CBT</td>
<td>Cognitive Behavioural Therapy</td>
</tr>
<tr>
<td>CDP</td>
<td>Central Dysesthetic Pain</td>
</tr>
<tr>
<td>CESD-SF</td>
<td>Center of Epidemiologic Studies Depression Scale-Short Form</td>
</tr>
<tr>
<td>CRT</td>
<td>Circuit Resistance Training</td>
</tr>
<tr>
<td>CSQ</td>
<td>Coping Strategies Questionnaire</td>
</tr>
<tr>
<td>DAAC</td>
<td>Duration-adjusted average change</td>
</tr>
<tr>
<td>DREZ</td>
<td>Dorsal Root Entry Zone</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalography</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromyography</td>
</tr>
<tr>
<td>FIM</td>
<td>Functional Independence Measure</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma-Aminobutyric Acid</td>
</tr>
<tr>
<td>GAD</td>
<td>Gabapentin Amitripyline Dihydropyramine</td>
</tr>
<tr>
<td>HADS</td>
<td>Hospital Anxiety and Depression Scale</td>
</tr>
<tr>
<td>ISCID</td>
<td>International Spinal Cord Injury Pain</td>
</tr>
<tr>
<td>ITB</td>
<td>Intrathecal Baclofen</td>
</tr>
<tr>
<td>LCT</td>
<td>Light Contact Touch</td>
</tr>
<tr>
<td>MMPI</td>
<td>Minnesota Multiphasic Personality Inventory</td>
</tr>
<tr>
<td>MPI</td>
<td>Multidimensional Pain Inventory</td>
</tr>
<tr>
<td>MPQ</td>
<td>McGill Pain Questionnaire</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl D Aspartate</td>
</tr>
<tr>
<td>NRS</td>
<td>Numeric Rating Scale</td>
</tr>
<tr>
<td>NSAIDS</td>
<td>Non-steroidal Anti-inflammatory Drugs</td>
</tr>
<tr>
<td>PAD</td>
<td>Zung Pain and Distress</td>
</tr>
<tr>
<td>PC</td>
<td>Performance Corrected</td>
</tr>
<tr>
<td>PGIC</td>
<td>Patient Global Impression of Change</td>
</tr>
<tr>
<td>PM</td>
<td>Pain Medications</td>
</tr>
<tr>
<td>PMP</td>
<td>Pain Management Program</td>
</tr>
<tr>
<td>PQOL</td>
<td>Perceived Quality of Life</td>
</tr>
<tr>
<td>PSS</td>
<td>Perceived Stress Scale</td>
</tr>
<tr>
<td>QI</td>
<td>Energy Flow</td>
</tr>
<tr>
<td>QOL</td>
<td>Quality of Life</td>
</tr>
<tr>
<td>ROM</td>
<td>Range of Motion</td>
</tr>
<tr>
<td>RPE</td>
<td>Rating of Perceived Exertion</td>
</tr>
<tr>
<td>SCI</td>
<td>Spinal Cord Injury</td>
</tr>
<tr>
<td>SF-36</td>
<td>Short Form-36</td>
</tr>
<tr>
<td>SF-MPQ</td>
<td>Short Form- McGill Pain Questionnaire</td>
</tr>
<tr>
<td>SHCS</td>
<td>Stanford Hypnotic Clinical Scale</td>
</tr>
<tr>
<td>SPI</td>
<td>Sternbach Pain Intensity</td>
</tr>
<tr>
<td>SRQ</td>
<td>Shoulder Rating Questionnaire</td>
</tr>
<tr>
<td>STAI</td>
<td>State Trait Anxiety Inventory</td>
</tr>
<tr>
<td>TCA</td>
<td>Tricyclic Antidepressants</td>
</tr>
<tr>
<td>TCES</td>
<td>Transcranial Electrical Stimulation</td>
</tr>
<tr>
<td>tDCS</td>
<td>Transcranial Direct Current Stimulation</td>
</tr>
<tr>
<td>TENS</td>
<td>Transcutaneous Electrical Nerve Stimulation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>THC</td>
<td>delta-9-tetra hydrocannabinol</td>
</tr>
<tr>
<td>TMS</td>
<td>Transcranial Magnetic Stimulation</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual Analogue Scale</td>
</tr>
<tr>
<td>VNS</td>
<td>Verbal Numeric Scale</td>
</tr>
<tr>
<td>WHYMPI</td>
<td>West Haven Yale Multidimensional Pain Inventory</td>
</tr>
<tr>
<td>WUFA</td>
<td>Wheelchair Users Functional Assessment</td>
</tr>
<tr>
<td>WUSPI</td>
<td>Wheelchair Users Shoulder Pain Index</td>
</tr>
</tbody>
</table>
Pain Following Spinal Cord Injury

1.0 Introduction
The last few decades have witnessed increasing sophistication and advances in the rehabilitation of spinal cord injured (SCI) patients with marked improvements in the quality of care accompanied by significant reductions in morbidity and mortality. Despite these impressive gains in bladder, skin, cardiovascular and respiratory care, the treatment of chronic pain in SCI has proven largely refractory to medical management. This lack of treatment efficacy has been complicated by an incomplete understanding of pain in individuals with spinal cord injuries and lack of a standardized framework upon which to classify these injuries (Burchiel & Hsu 2001).

2.0 Incidence, Quality and Significance

2.1 Incidence of Pain Post SCI
Pain is a frequent complication of traumatic spinal cord injury. Reported estimates of the incidence of pain following SCI range anywhere from 48 to 92% (Britell & Mariano 1991; Cohen et al. 1988; Mariano 1992; Modirian et al. 2010; Rose et al. 1988). These wide ranging estimates are felt to be a reflection of significant heterogeneity in defining pain in this population. Bonica (1991) reviewed data contained in 10 reports that surveyed 2,449 SCI patients (Botterell et al. 1953; Britell 1986; Burke 1973; Davis & Martin 1947; Kaplan et al. 1962; Munro 1950; Nepomunceno et al. 1979; Richards et al. 1980; Rose et al. 1988; Woolsey 1986). Chronic pain was present in 1,695 (69%) and in 30% of these patients it was rated as severe. Six of the reports (Botterell et al. 1953; Burke 1973; Davis & Martin 1947; Nepomunceno et al. 1979; Rose et al. 1988; Woolsey 1986) analyzed the different types of pain. Out of a total of 1,965 patients, 608 (31%) of the patients had central pain, dysesthesia, or phantom limb pain, 219 (12%) had root pain, and 198 (10%) had visceral pain caused by a central mechanism. There were 1,028 (53%) SCI patients with deafferented pain.

2.2 Impact on Quality of Life
It is estimated that 30-40% of patients with SCI experience severe disabling pain (Burke & Woodward 1976). Pain is often reported as the most important factor for decreased quality of life. Nepomuceno et al. (1979) noted that 23% of individuals with cervical or high thoracic SCI and 37% of those with low thoracic or lumbosacral injury would trade the loss of sexual and/or bowel and bladder function as well as hypothetical possibility for cure to obtain pain relief. Rose et al. (1988) sent a questionnaire to 1,091 spinal cord injured individuals. Pain, which was reported as constant in 43%, was considered severe at some point in the day in half the sample and mild to moderate in 21% of respondents. Prior to the SCI, 595 of the sample were employed; afterwards only 325 were employed. Interestingly 98 SCI individuals (11%) reported it was the severity of their pain and not their paralysis, which stopped them from working. Of the 325 SCI subjects (83%) who were employed, 269 reported that the pain interfered with their work. A total of 118 SCI subjects found that the pain was severe enough to stop social activity. Pain appeared to be more severe in the evening and at night, interfering with sleep in 325 of respondents (37%). This study clearly pointed out the importance of chronic pain in determining disability and morbidity in SCI patients (Rose et al 1988). Another survey in the Netherlands found 63.8% of respondents experienced high pain levels (Heutnik et al. 2011). NSW ACI Pain Network (2013) found that neuropathic pain was the most distressing for people with SCI.
Pain post SCI has a significant effect of quality of life.

2.3 Severe Pain and SCI Location

Persons with SCI who complain of severe pain are more likely to have low spinal cord or cauda equina lesions (Botterell et al. 1953; Davis & Martin 1947; Nepomuceno et al. 1979; Ragnarsson 1997). Severe pain was noted in 10-15% of persons with quadriplegia; 25% of those with thoracic paraplegia and 42-51% of those with lesions of the cauda equina (Ragnarsson 1997).

2.4 Natural History of SCI Pain

Turner et al. (2001) examined the timing of the development of pain post-SCI noted that in 901 patients with SCI, pain started immediately after SCI in 34%, within the first year in 58%, pain increased over time in 47% and decreased over time in 7%. Turner et al. (2001) noted that pain most often started within the first six months following SCI. This has also been noted in several other studies (Nepomuceno et al. 1979; Siddall et al. 1999; Stormer et al. 1997; Turner & Cardenas 1999).

Conclusion

*For many SCI patients, pain has a significant impact on quality of life.*

*Over 50% of SCI patients develop chronic pain. Severe pain is more common the lower down the lesion in the spinal cord. Pain post SCI most often begins within the first six to 12 months post-SCI.*

Post-SCI pain is common and often severe beginning relatively early post-injury.

3.0 Location and Quality of SCI Pain

Widerstrom-Noga et al. (2001) conducted a careful analysis of the relationship between the location of the pain and the patients’ description of the pain. In this study 217 of 330 patients reporting chronic pain in a previous survey agreed to participate in the study. Participants had been injured for an average of 8.2±5.1 years and 55.4% were quadriplegic. Most subjects in this study marked multiple areas on a pain drawing with the back area being most frequently implicated (61.8%). 59.9% complained of a burning pain while 54.9% described an aching pain. Interestingly burning pain was significantly associated with pain localized to the front of the torso and genitals, buttocks and lower extremities. In contrast, aching type pain was significantly associated with pain localized to the neck, shoulders and back.

Widerstrom-Noga et al. (2001) noted that the descriptor “burning” is often associated with neuropathic pain (Fenollosa et al. 1993; Ragnarsson 1997; Siddall et al. 1999) whereas “aching” is often associated with musculoskeletal pain (Siddall et al. 1999; Tunks 1986). However, since there is a significant overlap in the quality of pain types it is difficult to establish a definitive clinical relationship (Bowsher 1996; Eide 1998; Widerstrom-Noga et al. 2001). Widerstrom-Noga et al. (2001) suggest that musculoskeletal-type pain (best characterized by the aching pain in the neck, shoulders and back) is potentially amenable to therapeutic interventions and aggressive attempts should be made to ameliorate this type of pain. All of this underscores the
need for a reproducible classification system of the pain experienced following SCI. Bennett et al. (2007) have noted that the increasing reliance on validated screening tools may help “form the basis of forthcoming clinical diagnostic criteria”.

**Conclusion**

*The most common types of pain post SCI are: 1) a burning pain (likely neuropathic) usually localized to the front of torso, buttock or legs or 2) an aching pain (likely musculoskeletal) usually localized to the neck, shoulders and back.*

Post-SCI pain is most commonly divided into neuropathic or musculoskeletal pain.

### 4.0 Classification of SCI Pain

Siddall et al. (1997) noted that one of the concerns regarding SCI-related pain was a lack of consensus over a classification system for SCI pain. This has led to considerable variation in incidence and prevalence rates for pain post SCI depending on the classification system used. Twenty-eight classification schemes have been published between 1947 and 2000. A Task Force on Pain Following Spinal Cord Injury of the International Association for the Study of Pain has introduced a taxonomy, which classified SCI pain based on presumed etiology (Burchiel & Hsu 2001; Siddall et al. 2000). Recently, an international group of clinicians and researchers developed a consensus for an SCI pain classification, International Spinal Cord Injury Pain Classification (ISCIP Classification). The overall structure of the ISCIP classification is similar to that developed by the previous IASP classification of pain related to SCI. However, the new system has merged and improved on previously published SCI classification systems. The ISCIP classification incorporates common pain pathology after SCI even those not necessarily related to SCI itself (Bryce et al. 2012).

**Table 1 International Spinal Cord Injury Pain Classification (Bryce et al. 2012)**

<table>
<thead>
<tr>
<th>Tier 1: Pain type</th>
<th>Tier 2: Pain subtype</th>
<th>Tier 3: Primary pain source and/or pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nociceptive</td>
<td>Musculoskeletal</td>
<td>e.g. glenohumeral arthritis, lateral epicondylitis, comminuted femur fracture, quadratus lumborum muscle spasm.</td>
</tr>
<tr>
<td></td>
<td>Visceral</td>
<td>e.g. myocardial infarction, abdominal pain due to bowel impaction, cholecystitis.</td>
</tr>
<tr>
<td></td>
<td>Other nociceptive pain</td>
<td>e.g. autonomic dysreflexia headache, migraine headache, surgical skin incision.</td>
</tr>
<tr>
<td>Neuropathic</td>
<td>At Level SCI pain</td>
<td>e.g. spinal cord compression, nerve root compression, cauda equine compression</td>
</tr>
<tr>
<td></td>
<td>Below level pain</td>
<td>e.g. spinal cord ischemia, spinal cord compression</td>
</tr>
<tr>
<td></td>
<td>Other neuropathic pain</td>
<td>e.g. carpal tunnel syndrome, trigeminal neuralgia, diabetic polyneuropathy.</td>
</tr>
<tr>
<td>Other pain</td>
<td></td>
<td>e.g. fibromyalgia, Complex Regional Pain Syndrome type I, interstitial cystitis, irritable bowel syndrome</td>
</tr>
<tr>
<td>Unknown pain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Table 2 Previous IASP Classification of Pain Related to SCI (Burchiel & Hsu 2001)**

<table>
<thead>
<tr>
<th>Broad Type (Tier 1)</th>
<th>Broad System (Tier 2)</th>
<th>Specific Structure/Pathology (Tier 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nociceptive</td>
<td>Musculoskeletal</td>
<td>Bone, joint, muscle trauma, or inflammation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechanical instability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muscle spasm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Secondary overuse syndromes</td>
</tr>
</tbody>
</table>
Table 3 SCI pain types according to major classification*

<table>
<thead>
<tr>
<th>Broad Type (Tier 1)</th>
<th>Broad System (Tier 2)</th>
<th>Specific Structure/Pathology (Tier 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visceral</td>
<td>Renal calculus, bowel, sphincter dysfunction, etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dysreflexic headache</td>
<td></td>
</tr>
<tr>
<td>Above Level</td>
<td>Compressive mononeuropathies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complex regional pain syndromes</td>
<td></td>
</tr>
<tr>
<td>Neuropathic</td>
<td>Nerve root compression (including cauda equine)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syringomyelia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spinal cord trauma/ischemia (transitional zone, etc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dual-level cord and root trauma (double lesion syndrome)</td>
<td></td>
</tr>
<tr>
<td>At Level</td>
<td>Spinal cord trauma/ischemia (central dysesthesia syndrome, etc.)</td>
<td></td>
</tr>
<tr>
<td>Below Level</td>
<td>Spinal cord trauma/ischemia (central dysesthesia syndrome, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

*This article was published in Physical Medicine and Rehabilitation Clinics of North America, 18, Ullrich, Pain Following Spinal Cord Injury, 217-233, Copyright Elsevier (2007).

Table 4 Reliability of SCI pain classification systems

<table>
<thead>
<tr>
<th>Bryce/Ragnarsson</th>
<th>Kappa coefficient</th>
<th>Percent agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardenas</td>
<td>.70</td>
<td>Unavailable</td>
</tr>
<tr>
<td>Donovan</td>
<td>.55</td>
<td>50%-62%</td>
</tr>
<tr>
<td>IASP</td>
<td>.49</td>
<td>52%</td>
</tr>
<tr>
<td>Tunks</td>
<td>.49</td>
<td>27%</td>
</tr>
</tbody>
</table>

*Kappa coefficient is the proportion of agreement controlling for chance agreement, with 1.0 representing perfect agreement between raters. Kappa coefficients greater than .60 or .70 reflect substantial interrater agreement.

This article was published in Physical Medicine and Rehabilitation Clinics of North America, 18, Ullrich, Pain Following Spinal Cord Injury, 217-233, Copyright Elsevier (2007).

5.0 Musculoskeletal or Mechanical Pain

Musculoskeletal or mechanical pain occurs at or above the level of the lesion and is due to changes in bone, tendons or joints (Guttmann 1973). This is referred to as nociceptive pain caused by a variety of noxious stimuli to normally innervated parts of the body (Ragnarsson 1997). Overuse of remaining functional muscles after spinal cord injury or those recruited for unaccustomed activity may be of primary importance in some patients (Farkash & Portenoy 1986). Pain may also be secondary to spinal osteoporosis or facet arthropathy (Farkash & Portenoy 1986). Instability of the vertebral column may also be a problem (Farkash & Portenoy 1986).
1986). Pain is usually dull and aching in character and although more common soon after SCI, it may become chronic.

Sie et al. (1992) studied 239 SCI outpatients for the presence of upper extremity pain. Of the 136 patients with quadriplegia, 55% reported upper extremity pain, most commonly at the shoulder (46% of all subjects). In the case of shoulder pain, 45% were orthopedic-related including tendinitis, bursitis, capsulitis and osteoarthritis. Of the 103 paraplegics, 66 reported upper extremity pain with two-thirds reporting symptoms of carpal tunnel syndrome and 13 reporting musculoskeletal-related shoulder pain. Dalyan et al. (1999), in a questionnaire returned by 130 SCI patients, found that 58.5% of patients reported upper extremity pain. Of these, 71% had shoulder pain, 53% wrist pain, 43% hand pain, and 35% elbow pain. Pain was most likely to be associated with pressure relief, transfers, and wheelchair mobility. Subbarao et al. (1995), in a survey of 800 SCI patients, found that 72.7% of responders reported some degree of chronic pain at the wrist and shoulder, with wheelchair propulsion and transfers being responsible for most of the pain. McCasland et al. (2006) noted that in their survey, 70% of SCI had shoulder pain, one-third had a previous injury to their shoulder and 52% reported a bilateral pain. Quadriplegics were more likely to have shoulder pain (80%). Previous shoulder trauma increased the risk of having shoulder pain.

6.0 Central or Neurogenic Dysesthetic Pain

"Central" dysesthesia or "deafferentation" pain is the most common type of pain experienced below the level of SCI and is generally characterized as a burning, aching and/or tingling sensation. In many cases this dyesthetic or deafferentation pain has defied a pathophysiological explanation (Britell 1991) although most researchers firmly support a central nervous system origin for this pain. Nashold (1991) goes as far as stating that except for radicular pain, all other pains of paraplegia are central or deafferentation in origin. This pain is most often perceived in a generalized manner below the level of the lesion, often a diffuse burning type of pain (Britell 1991; Tunks 1986). Burning pain is reportedly most common with lesions at the lumbar levels, although it may be found with SCI at thoracic and cervical levels (Tunks 1986). Nashold (1991) reported this pain occurred almost immediately after SCI and persisted.

Beric (1997) refers to this pain as central dyesthetic pain (CDP) and found dissociative sensory loss and absence of spinothalamic-anterolateral functions, with different degrees of dorsal column function preservation present almost exclusively in incomplete SCI patients. CDP takes weeks or months to appear and is often associated with recovery of some spinal cord function. Paradoxically CDP is often characterized by complete loss of temperature, pinprick, and pain perception below the level of the lesion. It rarely occurs in spinal cord Injuries with complete sensory loss or loss of both sensory and motor functions below the level of the lesion. Davidoff et al. (1987a) concurred and further noted dyesthetic pain was more likely to be found in incomplete paraplegia resulting from penetrating wounds of the spinal cord, and in spinal fractures treated with conservative management.

A number of factors may contribute to exacerbations of these "central" pain syndromes; these include visceral diseases or disturbances, movement, smoking or alcohol, emotional factors, fatigue, and even weather changes (Botterell et al. 1953; Davis & Martin 1947; Davis 1975; Tunks 1986). Pressure sores, particularly if infected, or an occult injury such as a fracture, may result in an increase in burning, dyesthetic pain. These stimuli often provoke autonomic dysreflexic-like symptoms and simultaneously also may aggravate this "burning" pain.
7.0 Borderzone or Segmental Pain

Individuals with SCI frequently experience a band of pain and hyperalgesia at the border zone between diminished or abnormal and preserved sensation (Botterell et al. 1953; Davis 1975; Heliporn 1978; Kaplan et al. 1962; Maury 1978; Melzack & Loeser 1978; Michaelis 1970; Tunks 1986). In the more recent literature, this segmental pain is further described as occurring at or just above the level of sensory loss in the cutaneous transition zone from the area of impaired/lost sensation to areas of normal sensation, involving at least one to three dermatomes (Friedman & Rosenblum 1989; Nashold 1991; Ragnarsson 1997) and is often associated with spontaneous painful tingling or burning sensations in the same area. Ragnarsson (1997) also noted that in an individual with a cervical cord injury, segmental pain may be described as tingling, burning or numbing pain in the shoulders, arms or hands, those with a thoracic cord injury frequently describe a circumferential, feeling of tightness and pain around the chest and abdomen while lumbar lesions tend to be localized to the groins and different parts of the lower extremities. According to Nashold (1991) paraplegics often complain that touching the skin in the pain region activates the pain causing it to radiate into the lower parts of the body, especially the legs. Pain can be triggered by stroking and/or touching the skin in adjacent painful dermatomes (Nashold 1991). Even light touch or the pressure of clothing or bed sheets over this region may provoke marked discomfort (Tunks 1986). It may be accompanied by sweating or vasodilation at or below the level of hyperalgesia. Segmental pain is generally symmetrical although a partial spinal cord injury with asymmetrical neurological involvement will produce asymmetries (Nashold 1991).

This pain has also been described as "neuropathic at level pain" (Siddall et al. 1997). Although several theories have been proposed (Levitt 1983; Matthew & Osterholm 1972; Melzack & Loeser 1978; Nashold & Bullitt 1981; Pollock et al. 1951; Tunks 1986) the neurological mechanism responsible for this area of hyperalgesia after spinal injury is not well understood (Farkash & Portenoy 1986). Although radicular pain is most severe in incomplete SCI lesions, it is also seen in transected cauda equina lesions which are, by definition, radicular types of pain (Heaton & Coates 1965; Siddall et al. 1997). It may also be secondary to spinal cord instability by facet or disc material, or to direct damage to the nerve root during the initial injury (Burke 1973; Nashold 1991). This "radicular" pain is associated with sensory change in the involved painful dermatome (Nashold 1991) and is most common to cervical or lumbosacral nerve roots. Non-neural structures, such as the dura mater, have also been suggested as a source of radicular pain (Cyriax 1969; Farkash & Portenoy 1986). In addition, it has been suggested that central borderzone pain may be generated in the damaged spinal cord just proximal to the spinal cord injury (Nashold 1991; Pollock et al. 1951). Unfortunately, unless there is definitive evidence on imaging of nerve root damage, it is difficult to distinguish between these various mechanisms of pain.

To reflect this uncertainty Siddall et al. (1997) in their proposed classification of SCI pain note that this "neuropathic at level pain" is divided into radicular and central pain. Radicular pain is due to nerve root pathology while central pain is due to changes within the spinal cord or possibly supraspinal structures. Pain attributable to nerve root damage is suggested by features of neuropathic pain (i.e. burning, stabbing, shooting, electric-like pain, allodynia) and increased pain with spinal movement. Sjolund (2002) notes that this pain is thought to occur from nerve root entrapment and may occasionally benefit from decompression.

However, pain, which appears radicular in nature, may occur in the absence of nerve root damage. This leads to the second grouping of borderzone pain, namely central pain or that which is due to pathology within the spinal cord thought to be the result of damage to the gray
matter of the dorsal horn of the spinal cord (Ragnassaron 1997; Woolsey 1995). According to Ragnassaron (1997), such an injury “has been said to result in hyperactivity of the nociceptor cells within the dorsal horn (Nashold & Bullitt 1981; Nashold & Ostdahl 1979) which can be electrically recorded (Nashold & Alexander 1989).” Sojlu and (2002) notes that this second type of at level neuropathic pain is experienced as a girdle pain uni- or bilaterally in two to four segments of the transitional region. This pain is described as stimulus independent, often accompanied by troublesome allodynia or hyperalgesia and thought to arise from segmental deafferentation (Sjolund 2002).

8.0 Psychological Factors

Most studies of chronic SCI pain have focused on the medical causes and clinical manifestations of pain while much less is understood about how psychosocial factors impact SCI pain (Summers et al. 1991). Pain itself was found to be associated with greater emotional distress than the SCI itself. A negative psychosocial environment along with increased age, depression, anxiety and intellect were found to be associated with reports of greater post-SCI pain severity interfering with activities of daily living (Richards et al. 1980). Greater pain severity was not associated with physiological factors such as injury level, completeness of injury, surgical fusion and/or instrumentation or veteran status. The authors were unable to distinguish whether the psychological factors were a consequence of, or contributors to, greater pain severity. Summers et al. (1991) studied 54 SCI patients (19 with quadriplegia and 35 with paraplegia) and of these, 42 patients assessed with the Pain questionnaire found that anger and negative cognitions were associated with greater pain severity. Severity of pain was higher in patients who reported pain in response to a question on general well-being, those that were less accepting of their disability and those that perceived that a significant other would express punishing responses to their pain behaviours. The authors concluded that the experience of pain was associated with psychosocial factors. Hence treatment of post-SCI pain should involve these multidimensional aspects.

Cohen et al. (1988) found that patients with complete SCIs reported significantly less severe pain than did pain clinic patients. However, they did not differ from patients with incomplete lesions. Patients with complete SCIs and pain clinic patients showed a significantly more disturbed Minnesota Multiphasic Personality Inventory (MMPI) profile than did patients with incomplete SCIs. It was hypothesized that those patients with complete lesions view themselves as more functionally limited than patients with incomplete lesions, and the completeness of the SCI may be more important in determining psychosocial adjustment than pain per se. Rintala et al. (1998) in community-based men with SCI found that chronic pain was associated with more depressive symptoms, more perceived stress and poorer self-assessed health.

Wollaars et al. (2007) administered questionnaires to persons with a SCI. Of the potential 575 subjects, 49% provided responses. SCI pain prevalence was 77%. Factors associated with less pain intensity included more internal pain control and coping, less catastrophizing, a higher level of lesion and a non-traumatic SCI cause. More pain was associated with greater pain-related disability. Lower catastrophizing was related to better health. Factors related to greater well-being included less helplessness and catastrophizing, greater SCI acceptance and lower anger levels. Greater levels of depression were associated with higher levels of SCI helplessness, catastrophizing and anger. The authors noted that chronic SCI pain and quality of life were both largely associated with several psychological factors of which pain catastrophizing and SCI helplessness were more important. Surprisingly, pain intensity showed no independent relationships with health, well-being and depression (Wollaars et al. 2007).
Widerström-Noga et al. (2007) studied 190 patients with SCI and chronic pain and were able to identify three subgroups. The first group was described as ‘dysfunctional’, characterized by higher pain severity, life interference, affective distress scores, and lower levels of life control and activities scores. The second group was described as ‘interpersonally supported’, characterized by moderately high pain severity, and higher life control, support from significant other, distracting responses, solicitous response, and activities scores. The final group was described as ‘adaptive copers’, characterized by lower pain severity, life interference, affective distress, support from significant others, distracting responses, solicitous responses, activities and higher life control scores. Compared with dysfunctional subgroup, the interpersonally supported group reported significantly greater social support (Widerström-Noga et al. 2007).

8.1 Catastrophizing and Pain Post SCI

When pain post SCI is refractory to pharmacological and surgical treatment, it is important to fully understand the negative impact of the patient’s psychosocial environment prior to undertaking more invasive approaches to treatment.

Table 5 Catastrophizing and Pain Post SCI

| Author           | Year       | Country | Research Design | PEDro Score | Population: Age range: 21-64 yr; Gender: males=60, females=13. | Intervention: Questionnaire. | Outcome Measures: Coping Strategies Questionnaire (CSQ), Short form McGill Pain Questionnaire (SF-MPQ), West Haven-Yale Multidimensional Pain Inventory (WHYMPI) solicitous subscale and CES-D scale. | Methods                                                                                   | Outcome                                                                                   |
|------------------|------------|---------|-----------------|-------------|-----------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Giardino et al.  | 2003       | USA     | Case Series     | N=74        | 1. CSQ catastrophizing was associated with WHYMPI (p<0.05), CES-D (p<0.001), SF-MPQ (sensory pain) (p<0.01) and CSQ SF-MPQ (affective pain) (p<0.001). 2. Catastrophizing also accounted for significant variance in sensory pain scores (t=2.63, p<0.05). An interaction between relationship type and catastrophizing was also found (p<0.05). 3. A significant relationship was noted between affective pain score and solicitousness (p<0.05) and catastrophizing and solicitousness (p<0.05). 4. Catastrophizing itself accounted for a significant amount of variance in affective pain scores (p<0.01). |

Giardino et al. (2003) noted that pain-related catastrophizing, or exaggerating the negative consequences of a situation, has been associated with greater pain intensity, emotional distress and functional disability in patients with chronic pain conditions and SCI. This was thought to provide partial support for a “communal coping” model of catastrophizing, where catastrophizing in persons with pain may function as a social communication directed toward obtaining social proximity, support or assistance.

9.0 Non-Pharmacological Management of Post-SCI Pain

Before moving to pharmacological and surgical interventions, it is important to deal with those factors which may intensify or worsen the experience of pain. As mentioned previously, SCI pain may be worsened by decubitus ulcers, a urinary tract infection or stone, autonomic dysreflexia, increased spasticity, anxiety, depression, psychosocial factors and other
contributors to post-SCI pain (Davis et al. 1998; Tunks 1986). There are a number of non-pharmacological interventions for post-SCI pain which have been studied from massage to hypnosis.

9.1 Massage

Massage are used primarily to treat musculoskeletal pain. Their benefit is well known in several musculoskeletal pain disorders, although there are significant differences among therapists as to how treatment is delivered.

Table 6 Massage in Post-SCI Pain

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chase et al. 2013</td>
<td>USA</td>
<td>RCT</td>
<td>PEDro=5</td>
<td>N=40</td>
<td>Population: Mean age: 40.24 yr; Gender: males=33, females=7; Mean time since injury: 69.4 days; Level of severity: complete=23, incomplete=17; Type of pain: neuropathic, musculoskeletal. Intervention: SCI individuals in rehabilitation facility were randomly assigned to receive broad compression massage (BCM) or light contact touch (LCT) 3x/wk for 2 wk and then crossed over to the alternative treatment after a 1 wk wash-out period.</td>
<td>1. Pain intensity reduced significantly more in the individuals receiving LCT first compared to the BCM group, ( p=0.01 ). 2. No significant difference between the groups was seen in PHQ9.</td>
</tr>
<tr>
<td>Norbrink &amp; Lundeberg 2011</td>
<td>Sweden</td>
<td>Prospective Controlled Trial</td>
<td>N=30</td>
<td>Population: Mean age: 47.1 yr; Mean time since injury: 11.9 yr. Type of pain: neuropathic. Intervention: Participants were placed in one of two groups to receive acupuncture or massage therapy. Both groups consisted of 6 wk with treatment twice a wk. Outcome Measures: Visual Analogue Scale (VAS).</td>
<td>1. Worst pain intensity and pain unpleasantness improved significantly in the acupuncture group compared to the massage group. 2. However, no significant differences were seen in pain intensity between the two groups.</td>
<td></td>
</tr>
<tr>
<td>Norbrink-Budh &amp; Lundeberg 2004</td>
<td>Sweden</td>
<td>Case Series</td>
<td>N=402</td>
<td>Population: Age range: 7-83 yr; Gender: males=44, females=46; Mean time since injury: 14.4 yr; Type of pain: neuropathic and musculoskeletal. Intervention: No treatment questionnaire.</td>
<td>1. The authors noted that massage and heat appeared to be the best non-pharmacological treatments.</td>
<td></td>
</tr>
</tbody>
</table>

Effect Sizes: Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- and post-intervention data.
Norrbrink Budh and Lundeberg (2004) in a survey of SCI patients three years post-injury found massage and heat were the best non-pharmacological treatments to improve pain post SCI. However, evidence for its effectiveness is sparse. In a prospective controlled trial, 30 individuals were divided into either a massage therapy or acupuncture group. Each group received treatment two times a week for six weeks and were followed up for two months. The study found that the massage therapy group was not effective in improving pain intensity compared to the acupuncture group. In a crossover RCT, Chase et al. (2013) found that patients that received light touch and then massage were more likely report reduction in pain intensity than those that received massage and then light touch. The study did not examine the effectiveness of either treatment compared to the alternative; hence, it is difficult to examine if one treatment itself is more effective than the other.

Conclusion

There is level 2 evidence (from one randomized controlled trial and one prospective controlled trial; Chase et al. 2012; Norrbrink & Lundeberg 2011) that massage therapy may not improve neuropathic and musculoskeletal pain intensity post SCI.

9.2 Osteopathy

Osteopathy treatment has been shown to be effective in the relief of chronic pain in individuals with osteoarthritis and inflammatory conditions. Osteopathy’s effect on pain is related to its influence on the release of beta-endorphin and reduction in serotonin (Degenhardt et al. 2007).

<table>
<thead>
<tr>
<th>Author Year Country Research Design Score Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norrbrink Budh and Lundeberg (2004) in a survey of SCI patients three years post-injury found massage and heat were the best non-pharmacological treatments to improve pain post SCI. However, evidence for its effectiveness is sparse. In a prospective controlled trial, 30 individuals were divided into either a massage therapy or acupuncture group. Each group received treatment two times a week for six weeks and were followed up for two months. The study found that the massage therapy group was not effective in improving pain intensity compared to the acupuncture group. In a crossover RCT, Chase et al. (2013) found that patients that received light touch and then massage were more likely report reduction in pain intensity than those that received massage and then light touch. The study did not examine the effectiveness of either treatment compared to the alternative; hence, it is difficult to examine if one treatment itself is more effective than the other.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>9.2 Osteopathy</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteopathy treatment has been shown to be effective in the relief of chronic pain in individuals with osteoarthritis and inflammatory conditions. Osteopathy’s effect on pain is related to its influence on the release of beta-endorphin and reduction in serotonin (Degenhardt et al. 2007).</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Table 7 Osteopathy in Post-SCI Pain</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Author Year Country Research Design Score Total Sample Size</strong></td>
<td><strong>Methods</strong></td>
<td><strong>Outcome</strong></td>
</tr>
<tr>
<td>Arienti et al. 2011 Italy RCT PEDro=6 N=47</td>
<td>Population: Mean age: NR; Gender: NR; Level of severity: AIS A=33, B, C and D=14; Level of injury: paraplegia=19, tetraplegia=7; Type of pain: neuropathic. Intervention: Patients were randomly placed into three groups: pharmacological group received 600 mg/day of pregabalin. The pharmacological and osteopathic group received 600 mg/day of pregabalin</td>
<td>1. Rates of improvement based on the VNS scores were similar across the two treatments (p=0.26). 2. The highest pain relief was seen in the combined pharmacological and osteopathic group compared to the pharmacological alone (p=0.05) and the osteopathic alone (p=0.001).</td>
</tr>
</tbody>
</table>
and osteopathic treatment once a wk for the first mo, once every fortnight for the second mo, once during the third mo all for 45 min each by an osteopathic physician. The osteopathic group received on the osteopathic treatment described above.

**Outcome Measures:** Verbal numeric scale (VNS).

**Effect Sizes:** Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- and post-intervention data.

Arienti et al. (2011) examined the use of osteopathic treatment in reducing neuropathic pain post SCI. Participants were randomized into one of three groups: the pharmacological group received 600 mg of pregabalin per day; the combined pharmacological and osteopathy group received osteopathic treatment once a week for the first month, once every fortnight for the second month and once during the third month for 45 minutes along with the pharmacological treatment; the osteopathic group received only the osteopathic treatment schedule described and the combined group received both active treatments. The study found verbal numeric scale (VNS) ratings were not significantly different among the groups from baseline to eight weeks. However, the combined treatment group had the highest pain relief compared to the pharmacological alone (p=0.05) and the osteopathic alone (p=0.001) groups from 13 to 24 weeks.

**Conclusion**

*There is level 1b evidence (from one randomized controlled trial; Arienti et al. 2011) that osteopathy alone was as effective as pregabalin in improving neuropathic pain post SCI.*

*There is level 1b evidence (from one randomized controlled trial; Arienti et al. 2011) that osteopathy combined with pregabalin is more effective in reducing neuropathic pain post SCI than osteopathy alone.*
Osteopathy alone is as effective at reducing neuropathic pain as pregabalin post-SCI.

Osteopathy in combination with pregabalin is effective at reducing neuropathic pain post SCI.

9.3 Acupuncture

Acupuncture is a component of traditional Chinese medicine that has been used for the imbalance of energy flow (Qi) through the body (Dyson-Hudson et al. 2001). Needle acupuncture involves inserting fine needles into specific points to correct these imbalances (Dyson-Hudson et al. 2001; NIH Consensus Conference 1998; Pomeran 1998; Wong & Rapson 1999). Acupuncture has been shown to activate type II and type III muscle afferent nerves or A delta fibers, blocking the pain gate by stimulating large sensory neurons as well as releasing endogenous opioids, neurotransmitters and neurohormones (Dyson-Hudson et al. 2001; Pomeran 1998; Wong & Rapson 1999).

Table 8 Acupuncture in Post-SCI Pain

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyson-Hudson et al. 2007</td>
<td>USA</td>
<td>RCT</td>
<td>PEDro=9</td>
<td>N=17</td>
<td><strong>Population:</strong> Mean age: 39.9 yr; Gender: males=18, females=5; Level of injury: tetraplegia=8, paraplegia=15; Type of pain: nociceptive musculoskeletal shoulder pain. <strong>Intervention:</strong> Individuals received 10 treatments, 2x/wk (acupuncture or sham acupuncture) for 5 wk. <strong>Outcome Measures:</strong> Wheelchair User’s Shoulder Pain Index (WUSPI), Numeric Rating Scale (NRS).</td>
<td>1. Both groups experienced significant reduction in shoulder pain (p&lt;0.005), as indicated by WUSPI. 2. Greater reduction in pain in acupuncture group versus sham acupuncture group (66% versus 43%) was noted; however, there was no statistically significant difference in pain reduction between the two groups on WUSPI. 3. No significant differences in NRS between the two groups, though both had significant pain reduction.</td>
</tr>
</tbody>
</table>

**Effect Sizes:** Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- and post-intervention data.

<p>| Dyson-Hudson et al. 2001 | USA | RCT | PEDro=7 | N=24 | <strong>Population:</strong> Age range: 28-69 yr; Gender: males=18, females=6; Level of injury: paraplegia, tetraplegia; Time since injury range: 5-33 yr; Length of shoulder pain range: 4 mo-22 yr; Type of pain: nociceptive. <strong>Intervention:</strong> Subjects received either acupuncture treatments (sessions lasted 20-30 min) or Tager Psychophysical | 1. Analysis of treatment on PC-WUSPI scores using ANOVA showed a significant effect of time for both treatments (Acupuncture p&lt;0.001 and Trager p=0.001). 2. Overall a reduction of the PC-WUSPI could be seen when looking at the data from the beginning of |</p>
<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeh et al. 2010</td>
<td>Taiwan</td>
<td>RCT</td>
<td>PEDro=6</td>
<td>N=99</td>
</tr>
</tbody>
</table>

**Methods**

Integration (approx. 45 min). Consisted of both table work and mental gymnastic exercises.

**Outcome Measures:**
- Intake questionnaire (demographics and medical history), Weekly log, Wheelchair User’s Shoulder Pain Index (WUSPI),
- Numeric rating scale (NRS), Verbal Rating Scale (VRS), Range of Motion (ROM).

**Outcome**

- treatment to the end for both groups (p<0.05).

3. Looking at the effect of treatment on the numeric rating scores, the ANOVA showed a significant effect of time for both acupuncture and Trager groups for average pain and most severe pain (p<0.01, p<0.001 respectively), for the least severe pain the acupuncture group showed a significant reduction (p<0.01) compared to the Trager group.

4. There was a statistically significant effect for both groups on verbal pain rating (p=0.001).

**Effect Sizes:** Forest plot of standardized mean differences (SMD±95%CI) as calculated from pre- and post-intervention data.

Population: Mean age: 60.4 yr.

**Intervention:** Patients who previously underwent surgery for non-traumatic SCI were randomized to 3 groups: 1) received true acupoint intervention through electrical stimulation; 2) received sham acupoint; 3) received no acupoint stimulation.

**Outcome Measures:** Visual Analogue Scale (VAS), Brief Pain Inventory (BPI).

1. Significant difference was seen in pain intensity between the true acupoint group and sham group (p<0.03) and the true acupoint group and control group (p<0.02).

2. A significant reduction was also seen in the impact of pain on sleep in the true acupoint group compared to the other two groups (p<0.05).

**Effect Sizes:** Forest plot of standardized mean differences (SMD±95%CI) as calculated from pre- and post-intervention data.
**Author Year Country Research Design Score Total Sample Size**

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| Norrbrink  | 2011 | Sweden  | Prospective Controlled Trial | N=30  | 1. Worst pain intensity and pain unpleasantness improved significantly in the acupuncture group compared to the massage group.  
2. However, no significant differences were seen in pain intensity between the two groups. |
| Rapson     | 2003 | Canada  | Pre-Post                | N=36  | 1. 24 participants improved in response to electro-acupuncture while 12 showed no improvement.  
2. Bilateral pain (n=21) more likely to respond to electro-acupuncture than those with unilateral pain (n=3, p=0.014).  
3. Those with symmetric pain had a higher response to treatment than those who asymmetric pain (p=0.26).  
4. It was also noted that those with burning pain that was bilateral and symmetric (p=0.006) was more likely to improve after electroacupuncture.  
5. Similar findings were noted for those who experienced bilateral symmetric constant burning pain (p=0.005). |
| Nayak      | 2001 | USA     | Pre-post                | N_initial=31, N_final=22 | 1. Pain intensity decreased over time: worst pain (p<0.05), average pain, (p<0.01), and present pain (p<0.01).  
2. Post-treatment decline in pain intensity was maintained at 3mo follow-up (pre-treatment versus follow-up: p<0.01).  
3. A difference in the ratings of pain intensity between pre- and post-treatment (p<0.001) was noted and this was maintained 3 mo after the end of treatment (pre-treatment versus follow-up: p<0.01).  
4. Those that did report pain relief at 3mo follow up reported only moderate levels of pain intensity on the NRS at the beginning of the study (7.83±0.75) compared to those who did not report pain relief (9.67±0.58, p<0.01).  
5. Pain interference: a decrease in pain interference with ADLs was also noted (p<0.05). Respondents showed a reduction in interference with ADLs at post-treatment (p<0.01). |

Discussion
Evidence from the studies above suggests acupuncture results in significant decrease in pain intensity over time (Dyson-Hudson et al. 2007; Dyson-Hudson 2001; Nayak 2001; Norrbrink 2011). However, no group differences were found between acupuncture and sham treatment (Dyson-Hudson 2007) or Tager Psychophysical Integration (Dyson-Hudson 2001). True acupoint was significantly more effective in reducing pain intensity compared to sham or no acupoint (Yeh et al. 2010). Electroacupuncture was also shown to improve symmetric bilateral burning pain post intervention (Rapson et al. 2003). Norrbrink et al. (2011) found that acupuncture improved worst pain intensity but not average pain intensity when compared to a massage intervention.

Conclusion

There is level 1a evidence (from two randomized controlled trials; Dyson-Hudson et al. 2001, 2007) that in general acupuncture is no more effective than Trager therapy or sham acupuncture in reducing nociceptive musculoskeletal shoulder pain post SCI.

There is level 1b evidence (from one randomized controlled trial; Yeh et al. 2010) that electroacupuncture reduces neuropathic pain of patients with SCI.

<table>
<thead>
<tr>
<th>Author Year Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ginis et al. 2003</td>
<td>Canada RCT</td>
<td>PEDro=6</td>
<td>N=34</td>
<td>Population: Mean age: 38.6 yr; Gender: males=23, females=11; Level of severity: complete=14, incomplete=13; Type of pain: neuropathic, musculoskeletal. Intervention: Participants in the non-exercise group were asked to continue their usual activities but they were asked not to exercise regularly. Those in the exercise group participated in 5 min of stretching, 15-30 min of aerobic arm ergometry exercise and 45-60 min of resistance exercise. These subjects trained 2x/wk in small groups. Outcome Measures: Pain perception (two items from the Short form-36 Health Survey (SF-36)), Symptom self-efficacy</td>
<td>After 3 mo, changes in potential mediators were seen in: • The treatment group showed a significant decrease in stress (p=0.01) and pain (p=0.03) than the control group. • The two groups for QoL (p=0.007); satisfaction with physical function (p&lt;0.01); satisfaction with physical appearance (p=0.007); depression (p=0.02).</td>
</tr>
</tbody>
</table>
and perceived control (two core items from the Beliefs scale and a modified version of the arthritis belief scale), Stress was measured using the perceived stress scale.

p<0.01) and for stress it was (R2=0.12, p<0.01).

- These were significant predictors of baseline adjusted 3 mo QoL.

3. Stress and pain as mediators of depression:
   - Changes in pain but not stress explained significant variance in baseline adjusted depression scores (R2=0.19 and 0.04).
   - Adjusted pain scores showed variance in the adjusted 3mo depression scores (R2=0.19 and <0.01).

**Effect Sizes:** Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- and post-intervention data.

| SF-36 - Pain | 0.78 (0.01,1.51) |
| Favour Control | Standardized Mean Difference (95%C.I.) | Favour Treatment |

**Discussion**

Ginis et al. (2003) studied SCI patients who underwent a regular exercise program and compared them to SCI patients who did not. Those who underwent the regular exercise program experienced a significant improvement in pain scores which in turn accounted for improved depression scores. Ditor et al. (2003) found that pain scores were negatively correlated with adherence to a later exercise program.

**Conclusion**

*There is level 1b evidence (from one randomized controlled trial; Ginis et al. 2003) that a regular exercise program significantly reduces post-SCI neuropathic and*
9.5 Exercises for Shoulder Pain

Shoulder pain is a common form of musculoskeletal pain following SCI and is often the result of increased physical demands, awkward or over-use of the upper extremities as the individual with SCI compensates for loss of lower limb functioning (Curtis et al. 1999). Curtis et al. (1999) has noted, “tightness of the anterior shoulder musculature, combined with weakness of the posterior shoulder musculature both seem to contribute to development of shoulder pain in wheelchair users (Burnham et al. 1993; Curtis et al. 1999; Millikan et al. 1991; Powers et al. 1994) and may be further complicated by paralysis and spasticity in the individual with tetraplegia (Powers et al. 1994; Silverskiold & Waters 1991)”. The prevalence of shoulder pain in SCI individuals ranges between 30-100% (Curtis et al. 1999) and is a consequence of increased physical demands and overuse (Nichols et al. 1979; Pentland & Twomey 1991, 1994).

Table 10 Shoulder Pain Management Post SCI

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Population: Mean age: 35 yr; Gender: males=35, females=7; Level of injury: cervical to lumbar; Mean duration of w/c use: 24 yr; Type of pain: nociceptive.</th>
<th>Intervention: The experimental group attended a 60 min educational session where they were instructed in five shoulder exercises.</th>
<th>Outcome Measures: Self-report questionnaire (demographic and medical info), Wheelchair User’s Shoulder Pain Index (WUSPI), Visual Analogue Scale (VAS) used to rate intensity of pain.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curtis et al. 1999</td>
<td>USA</td>
<td>RCT</td>
<td>PEDro=5</td>
<td>N=42</td>
<td>1. When looking at the effect of exercise intervention on performance corrected (PC) WUSPI, a two factor repeated measures ANOVA showed a significant effect of time only (p=0.048). 2. There were no significant differences between control and experimental group in age, years of wheelchair use or activity levels although the control group had much lower pain scores at baseline.</td>
<td>Effect Sizes: Forest plot of standardized mean differences (SMD±95% C.I.) as calculated from pre- and post-intervention data.</td>
<td></td>
</tr>
<tr>
<td>Author Year</td>
<td>Country</td>
<td>Research Design</td>
<td>Score</td>
<td>Total Sample Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-----------------</td>
<td>-------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serra-Ano et al. 2012</td>
<td>Spain</td>
<td>Pre-Post</td>
<td>N=15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finley &amp; Rodgers 2007</td>
<td>USA</td>
<td>Pre-Post</td>
<td>N=17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Methods

1. **WUSPI - Raw Score**
   - Curtis et al. 1999: Exercise vs No Intervention
   - \( t = 0.41 (0.20, 1.02) \)
   - \( t = 0.45 (0.27, 1.06) \)
   - \( t = 0.46 (0.23, 1.11) \)
   - \( t = 0.54 (0.29, 1.16) \)
   - \( t = 0.62 (0.27, 1.00) \)
   - \( t = 0.34 (0.20, 0.95) \)
   - \( t = 0.35 (0.26, 0.96) \)
   - \( t = 0.34 (0.20, 0.95) \)

### Outcome

**Population: Age range: 26-70 yr; Gender: males=15, females=0; Level of severity: complete=15; Type of pain: nociceptive.**

**Intervention:** SCI individuals with chronic shoulder pain participated in an 8 wk resistance training program with 3 sessions/wk.

**Outcome Measures:** Wheelchair User’s Shoulder Pain Index (WUSPI).

1. Significant decrease in pain intensity was reported post treatment (p<0.05).
2. Upper limb functionality including rotation, flexion and extension improved significantly post treatment (p<0.05).

---

**Population: Mean age: 46 yr; Gender: males=9, females=8; Injury etiology: SCI=9, other=8; Mean duration of w/c use: 15 yr.**

**Intervention:** 4 wk baseline phase where patients used personal wheelchairs (no intervention), followed by a 5 mo phase where patients used the intervention wheelchair (MAGICWheels 2-gear wheel). There was a 4 wk retention period in which patients used their personal wheelchairs again. Once a day patients were instructed to navigate in uneven terrain or on a hill.

**Outcome Measures:** Wheelchair User’s Shoulder Pain Index (WUSPI), Wheelchair Users Functional Assessment (WUFA), Self-reported activities (Activities Log), Timed hill climb test with Rating of Perceived Exertion (RPE).

1. Shoulder ROM, upper-extremity strength, or the occurrence of specific shoulder diagnoses did not differ after use of MAGICWheels (p<0.05).
2. Shoulder pain was significantly decreased following the treatment at wk 2 (p=0.004) through wk 16 (p=0.015).
3. At wk 20, one patient reported increased pain from unrelated factor.
4. During the 4 wk retention phase, the WUSPI scores indicated a trend toward increasing shoulder pain. However, no significant increase was found compared to the last week of using the MAGICWheels (p<0.05).
5. During the MAGICWheels phase, patients encountered significantly more carpeted (p<0.01) and grass (p<0.001) surfaces in comparison to the baseline phase.
6. During the retention phase patients encountered significantly more hills.
<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nash et al. 2007</td>
<td>Netherlands</td>
<td>Pre-Post</td>
<td>N=7</td>
<td></td>
<td>Population: Age range: 39-58 yr; Level of injury: T5-T12; Level of severity: complete=7.</td>
<td>(p=0.009) and gravel (p=0.03) surfaces in comparison to the baseline phase.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention: Seven participants volunteered to undergo 16 wk of circuit resistance training (CRT), 3x/wk on non-consecutive days, each session lasting 45 min. Included were: circuit resistance training, low-intensity endurance activities, military press, horizontal rows, pectoralis (horizontal row), preacher curls, wide-grip latissimus pull-downs, and seated dips.</td>
<td>7. No difference was found in WUFA following the use of the 2-gear wheel (p=0.06).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Outcome Measures: Wheelchair User’s Shoulder Pain Index (WUSPI).</td>
<td>8. There was significantly longer hill time during the use of the 2-gear wheel (p&lt;0.01), however no difference was found in the RPE (p=0.013).</td>
</tr>
<tr>
<td>Nawoczenski et al. 2006</td>
<td>USA</td>
<td>Prospective Controlled Trial</td>
<td>N=41</td>
<td></td>
<td>Population: Exercise Group: Mean age: 47.1 yr; Gender: males=15, females=6; Level of injury: C=3, T2-T7=7, T8-T12=7, L=4; Level of severity: incomplete=13, complete=8. Control Group: Mean age: 38.1 yr; Gender: males=13, females=7; Level of injury: T2-T7=7, T8-T12=12, L=1; Level of severity: incomplete=6, complete=14.</td>
<td>1. Participants reported a reduction in pain. WUPSI scores decreased from 31.8±23.5 to 5.0±7.7 (p=0.008). 3/7 participants reported near-complete resolution of shoulder pain following treatment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention: Those in the experimental group (n=21) were given an 8 wk home exercise program consisting of stretching and strengthening exercises. This program was augmented at 4 wk (or sooner). Changes included increasing elastic band resistance, increasing repetitions, or both. The asymptomatic control group (n=20) was not given any exercises.</td>
<td>2. All completed training, with peak Vo2 values increasing from 1.64±0.45 to 1.81±0.54L/min (p&lt;0.01).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Outcome Measures: Wheelchair User’s Shoulder Pain Index (WUSPI); Shoulder Rating Questionnaire (SRQ).</td>
<td>3. Anaerobic power increased significantly as a result of training; peak power increased by 6% and average power by 8.6% (p=0.005 and p=0.001, respectively).</td>
</tr>
</tbody>
</table>

**Discussion**

Resistance training significantly improvement pain intensity based on the WUSPI (Serra-Ano et al. 2012; Nash et al. 2007; Nawaczenski et al. 2006) and upper limb range of motion (Serra-Ano et al. 2012) post intervention. Shoulder exercise education is not sufficient in reducing shoulder pain compared to control (Curtis et al. 1999). The use of MAGIC wheels two-gear wheelchair
reduced shoulder pain; while normal personal wheel chairs were reported to increase in shoulder pain (Finley & Rogers 2007).

Conclusion

*There is level 2 evidence* (from one prospective controlled trial and two pre-post study; Nawoczenski et al. 2006; Serra-Ano et al. 2012; Nash et al. 2007) *that a shoulder resistance training reduces the intensity of nociceptive shoulder pain post-SCI.*

*There is level 4 evidence* (from one pre-post study; Finley & Rodgers 2007) *that the MAGIC wheels 2-gear wheelchair results in decrease of nociceptive shoulder pain.*

*There is Level 1b evidence* (from one RCT; Curtis et al. 1999) *that shoulder exercise education may not improve shoulder pain.*

<table>
<thead>
<tr>
<th>Author Year Country</th>
<th>Research Design Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jensen et al. 2009</td>
<td>USA RCT PEDro=5 N=37</td>
<td></td>
<td>Population: Mean age: 49.6 yr; Gender: males=28, females=9; Type of pain: neuropathic. Intervention: Participants were randomized to receive either hypnosis or biofeedback. Individuals receiving hypnosis underwent 10 sessions of training/ day or wk. While the biofeedback group received 10 sessions of Electromyography biofeedback. Outcome Measures: Numeric Rating Scale (NRS).</td>
<td>1. For individuals with neuropathic pain, a significant decrease in daily pain intensity was seen in the hypnosis group post-session (p&lt;0.01), but not in the biofeedback group. 2. Neither treatment was effective in reducing pain for individuals without neuropathic pain.</td>
</tr>
</tbody>
</table>

9.6 Behavioural Management of Pain Post SCI

9.6.1 Hypnotic Suggestions

Hypnosis has been used to reduce pain in a number of painful clinical conditions as well as experimental pain (Jensen et al. 2000). Hypnosis is appealing as a potential treatment because it is non-pharmacological although its use is controversial given the variability in hypnotic responsiveness.

Table 11 Hypnotic Suggestion Post-SCI Pain
**Discussion**

Jensen et al. (2009) randomly allocated participants into hypnosis or the biofeedback treatment group. Participants in the hypnosis group reported a significant decrease in neuropathic pain intensity compared to those in the biofeedback group (p<0.01). However, no such effect was seen between the two groups in individuals without neuropathic pain. Jensen et al. (2000), in a before and after study, examined the impact of hypnosis on pain post-SCI. 86% of the SCI patients reported a decrease in pain intensity and unpleasantness after hypnosis, although there was no control group.

**Conclusion**

*There is level 2 and level 4 evidence (from one randomized controlled trial and one pre-post study; Jensen et al. 2009, 2000) that hypnosis reduces neuropathic and musculoskeletal pain intensity post SCI.*
9.6.2 Biofeedback

Biofeedback involves training individuals to gain control over brain states through electroencephalography (EEG) in order to help improve pain intensity. Biofeedback has previously been shown to improve pain intensity in individuals with fibromyalgia and migraines (Jensen et al. 2013).

Table 12 Biofeedback Post-SCI Pain

<table>
<thead>
<tr>
<th>Author Year Country Research Design Score Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middaugh et al. (2013) USA RCT PEDro=5 N=15</td>
<td><strong>Population</strong>: Mean age: 38 yr; Gender: males=12, females=3; Level of injury: paraplegia=13, quadriplegia=2; Mean time since injury: 6 yr; Type of pain: musculoskeletal (cervical and shoulder). <strong>Intervention</strong>: Individuals using wheelchairs were randomized to an exercise program alone (control, n=7) or with EMG biofeedback (treatment, n=8). Exercise programs were taught in two 90min sessions and were to be performed at home (1x/day, 5d/wk, 10 wk). EMG biofeedback training was provided in 4 sessions (90 min). Outcomes were assessed at baseline, 10 wk, and 6 mo. <strong>Outcome Measures</strong>: Wheelchair User Shoulder Pain Index (WUSPI).</td>
<td>1. The treatment group had a significant reduction in WUSPI score at 10wk (Δ=64%, p=0.02) while the control group did not (Δ=27%, p=0.42). 2. There were significant reductions in WUSPI score at 6mo in both the control group (Δ=63%, p=0.03) and treatment group (Δ=82%, p=0.004).</td>
</tr>
<tr>
<td>Jensen et al. 2009 USA RCT PEDro=5 N=37</td>
<td><strong>Population</strong>: Mean age: 49.6 yr; Gender: males=28, females=9; Time since injury: NR; Type of pain: neuropathic. <strong>Intervention</strong>: Participants were randomized to receive either hypnosis or biofeedback. Individuals receiving hypnosis underwent 10 sessions of training/day or wk. While the biofeedback group received 10 sessions of Electromyography biofeedback. <strong>Outcome Measures</strong>: Numeric Rating Scale (NRS).</td>
<td>1. Individuals with neuropathic pain a significant decrease in daily pain intensity was seen in the hypnosis group post-session (p&lt;0.01) but not the biofeedback group. 2. Neither treatment was effective in reducing pain for individuals without neuropathic pain.</td>
</tr>
<tr>
<td>Author Year</td>
<td>Country</td>
<td>Research Design</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>Jensen et al. 2013</td>
<td>USA</td>
<td>Pre-Post</td>
</tr>
</tbody>
</table>

**Methods**

- Population: Mean age: 46.1 yr; Gender: males=7, females=3; Mean time since injury: 12.3 yr; Type of pain: neuropathic, musculoskeletal.
- Intervention: SCI individuals with chronic pain were provided with 4 sessions of electroencephalography (EEG) Biofeedback for pain management.
- Outcome Measures: Numeric Rating Scale (NRS).

**Outcome**

1. Significant improvement in worst pain intensity (p=0.01) and pain unpleasantness (p=0.026) was seen post treatment and at 3 mo follow up.
2. No significant improvement in average pain intensity or sleep was seen.

**Discussion**

A Pre-Post study (Jensen et al. 2013) found biofeedback improved worst pain intensity but not average pain intensity among individuals with SCI pain. Jensen et al. (2009) randomly allocated participants into hypnosis or the biofeedback treatment group. Participants in the hypnosis group reported a significant decrease in neuropathic pain intensity compared to those in the biofeedback group (p<0.01). However, no such effect was seen between the two groups in individuals without neuropathic pain. Middaugh et al. (2013) found that exercise and EMG biofeedback training resulted in significant reduction in WUSPI scores post intervention and at six-month follow up.

**Conclusion**

*There is level 4 evidence (from one pre-post study; Jensen et al. 2013) that biofeedback may reduce worst pain intensity post SCI.*

*There is level 1b evidence (from 1 RCT; Middaugh et al. 2013) that combined EMG and exercise may reduce pain post SCI.*

*There is level 1b evidence (from 1 RCT; Jensen et al. 2009) that biofeedback is not as effective as hypnosis in reducing neuropathic pain post SCI.*

Biofeedback may reduce neuropathic and musculoskeletal pain intensity post SCI.

### 9.6.3 Cognitive Behavioural Therapy
Cognitive behavioural therapy (CBT) is a commonly used psychological intervention for chronic pain. Often used as a part of a more comprehensive pain management program, it attempts to modify beliefs and coping skills, particularly when these beliefs and coping skills are dysfunctional.

Table 13 Cognitive Behavioural Therapy

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heutink et al. 2012</td>
<td>Netherlands</td>
<td>RCT</td>
<td>PEDro=6</td>
<td>N=61</td>
<td>Population: Mean age: 58.8 yr; Gender: males=39, females=22; Mean duration of pain: 5.4 yr; Type of pain: neuropathic. <strong>Intervention:</strong> SCI Individuals with chronic neuropathic pain were randomly assigned to receive interdisciplinary pain management which included Cognitive behavioural therapy (CBT) and education or wait list control group. The intervention consisted of 10 sessions over 10-wk period with a comeback session 3 wk after the 10th session. <strong>Outcome Measures:</strong> Chronic Pain Grade Questionnaire (CPG); Hospital Anxiety and Depression Scale (HADS).</td>
<td>1. Pain intensity decreased over time among the two group, p&lt;0.01. 2. Significant difference in pain intensity was seen between the two groups post intervention. However, no group difference between the two group were seen in pain intensity at 3 mo follow-up. 3. No significant difference in HADS depression was seen between the two groups or over time. 4. Individuals in the CBT group found significant improvement in anxiety (p&lt;0.027) and participation in activities (p&lt;0.008) compared to the control group.</td>
</tr>
<tr>
<td>Burns et al. 2013</td>
<td>Canada</td>
<td>Pre-Post</td>
<td>N=17</td>
<td>Population: Mean age: 48 yr; Gender: males=11, females=6; Level of injury: tetraplegia=8, paraplegia=9; Level of severity: complete=3, incomplete=14; Duration of pain: &gt;6 mo; Type of pain: neuropathic, musculoskeletal. <strong>Intervention:</strong> SCI Individuals with chronic pain were provided group based interdisciplinary pain management which included Cognitive behavioural therapy (CBT) self-management, and exercise biweekly for 10 wk. <strong>Outcome Measures:</strong> Multidimensional Pain Inventory (MPI).</td>
<td>1. No significant improvement in pain severity subscale of MPI was seen post intervention or at 12 mo. 2. Significant improvement in life interference and life control subscales was seen (p&lt;0.01) up to the 12 mo follow up.</td>
<td></td>
</tr>
<tr>
<td>Perry et al. 2010</td>
<td>Australia</td>
<td>Prospective Controlled Trial</td>
<td>N=36</td>
<td>Population: Mean age: 43.8 yr; Gender: males=28, females=8; Level of injury: tetraplegia=13, paraplegia=20; Level of severity: complete=13, incomplete=23; Mean duration of pain: 60.5 mo; Type of pain: neuropathic, musculoskeletal. <strong>Intervention:</strong> SCI patients with chronic pain were placed in either the multidisciplinary cognitive behavioural pain management program (PMPS) group (N=19) which involved a pharmacological treatment plan and individual and group based cognitive behavioural therapy for pain; or the usual care group (N=17). <strong>Outcome Measures:</strong> Pain response self-statement scale, Pain self-efficacy questionnaire (PSEQ), Multidimensional Pain Inventory (MPI), Hospital Anxiety Depression Scale (HADS).</td>
<td>1. At baseline, the PMP group had significantly worse usual pain intensity scores than the usual care group. 2. A significant improvement was seen in MPI and SF-12 MCS scores in the PMP group compared to the control group post treatment (p=0.026, p=0.015). 3. Mean scores of participants in the PMP group moved from moderate to mild disability. 4. A trend towards improvement on the usual pain intensity and HADS depression score was seen in the PMP group at 1 mo post treatment; however, the HADS depression scores returned to pre-treatment levels at 9 mo follow-up.</td>
<td></td>
</tr>
<tr>
<td>Author Year Country</td>
<td>Research Design Score Total Sample Size</td>
<td>Methods</td>
<td>Outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norrbrink et al. 2006 Sweden Prospective Controlled Trial N=38</td>
<td>Population: SCI; Treatment: Mean age: 53.2 yr; Gender: males=9, females=18. Control: Mean age: 49.9 yr; Gender: males=5, females=6; Level of severity: AIS A-E; Type of pain: neuropathic. Intervention: SCI individuals were provided standard treatment of interdisciplinary pain management. The individuals in the interdisciplinary pain management participated in a 10 wk, 2x/wk treatment program which included four elements: 1) education (1.5 hr); 2) behavioural therapy (1.5 hr); 3) relaxation techniques and stretching/light exercise (1 hr); and 4) body awareness training (1 hr). Outcome Measures: Pain Chart and pain rating was completed, Pain intensity and unpleasantness was assessed with the Borg CR10 scale, Quality of sleep (survey), Nottingham Health Profile (Quality of life) was completed, Mood (Hospital Anxiety and Depression) was assessed, Coherence and use of the healthcare system were also assessed.</td>
<td>1. From baseline to 12 mo evaluation period, the treatment group experienced decrease in: • Anxiety and depression. • Sleep. 2. No change was seen over time in: • Pain intensities and unpleasantness. • Health-related quality of life. • Life satisfaction. 3. A significant improvement was noted for the Emotional Reaction subscale only (p&lt;0.01). 4. The two groups showed significant differences on the depression and SOC scores. 5. A significant decrease in the number of visits between baseline and the 12 mo assessment period was noted for the treatment group (from 15 to 5; p&lt;0.03), along with the median number of visits to physicians (from 3 to 1; p&lt;0.03).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Discussion**

Four studies examined the effectiveness of interdisciplinary pain management on chronic pain post SCI. Perry et al. (2010) placed SCI individuals with chronic pain into a multidisciplinary cognitive behavioural pain management program, involving pharmacological and CBT treatment, or in a usual care control group. This was the only study to find significant improvement in both the MPI and SF-12 MCS scores in the treatment group compared to the control group post treatment. A trend towards improved pain intensity and HADS score was also seen in the treatment group post treatment; however, scores returned to pre-treatment scores by nine-month follow-up. Norrbrink et al. (2006), Burns et al. (2013), and Heutink et al. (2012) found no improvement in pain intensity among individuals receiving treatment. However, both studies found significant improvement in related psychosocial factors post treatments. Norrbrink et al. (2006) found significant improvement in anxiety, depression and sleep interference post treatment. Burns et al. (2013) found change in life interference and locus of control. Significant improvement in anxiety and participation in activities was seen in Heutink et al. (2012) among individuals that received CBT.

**Conclusions**

*There is level 2 evidence (from one prospective controlled trial; Perry et al. 2010) that a cognitive behavioural pain management program with pharmacological treatment may improve secondary outcomes among SCI individuals with chronic pain post SCI.*

*There is level 1b evidence (from one randomized controlled trial one prospective controlled trial, and one pre-post study; Heutink et al. 2012; Norrbrink et al. 2006; Burns...*
et al. 2013) that cognitive-behavioural therapy alone does not change post-SCI pain intensity.

Cognitive behavioral therapy combined with pharmacological treatment may result in improvement in secondary outcomes among SCI individuals with chronic pain.


9.6.4 Visual Illusion

Visual illusion therapy is a cognitive technique which uses guided images to alter perceptions and modify behaviour. It has been used in various studies to alleviate pain responses by changing feelings of perceived discomfort (Kazdin 2001; Korn 2002; Kwekkeboom 2001). It is based on a cortical model of pathological pain (Harris, 1999). This model states that the injury causes a mismatch between motor output and sensory feedback which in turn contributes to the pain. Studies have found normalization of the cortical proprioception representation results in recovery from pain (Floor et al. 2000; Maihofner et al. 2004; Pleger et al. 2005).

<table>
<thead>
<tr>
<th>Table 14 Visual Illusion</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Author</strong></td>
</tr>
<tr>
<td>Ozkul et al. 2015</td>
</tr>
<tr>
<td>Soler et al. 2010</td>
</tr>
</tbody>
</table>
transcranial DCS group with control visual illusion received the above mentioned transcranial DCS however for the visual illusion only received a video of faces or landscapes, visual illusion group and sham transcranial DCS had electrodes placed on the same area as the treatment group however the stimulator was turned off after 30 sec of stimulation and placebo group consisted of both the control visual illusion and the sham transcranial DCS.

**Outcome Measures:** Numeric Rating Scale (NRS).

**Effect Sizes:** Forest plot of standardized mean differences (SMD±95% C.I.) as calculated from pre- and post-intervention data.
<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jordan et al. 2016</td>
<td>USA</td>
<td>Cohort</td>
<td>N=35</td>
<td>Population: Mean age: 47.5 yr; Type of pain: neuropathic. Intervention: Participants received illusory therapy through a 20 min first person view video of an actor walking along a path. Participants were asked to imagine either walking or wheeling depending on their group allocation. Outcome Measures: Change in painful sensation on a 11-point numeric rating scale.</td>
<td>1. Significant decrease in pain was seen among those in the virtual walking versus virtual wheeling condition (p=0.03). 2. A decrease in at-level pain was seen pre-post among those in the virtual walking group (p=0.08).</td>
<td></td>
</tr>
<tr>
<td>Kumru et al. 2013</td>
<td>Spain</td>
<td>Cohort</td>
<td>N=52</td>
<td>Population: Age range: 25-69 yr; Gender: males=34, females=18; Type of pain: neuropathic, musculoskeletal, with a sub analysis of neuropathic. Intervention: Three cohorts of individuals (group 1(N=18): SCI neuropathic pain; group 2(N=20): SCI non-neuropathic pain; group 3(N=14): healthy matched) underwent daily transcranial direct current stimulation along with visual illusion therapy for 2 wk. The visual illusion involved the participant seated viewing a video of the matching gender walking on a treadmill. Outcome Measures: Numeric Rating Scale (NRS).</td>
<td>1. SCI individuals with neuropathic pain had a 37.4% improvement in pain intensity post treatment. 2. 13 of 18 individuals in the neuropathic group reported 50% decrease in pain intensity post treatment. 3. Evoked pain perception was significantly lower in the neuropathic pain group compared to SCI, nonneuropathic and healthy controls. 4. Pain threshold was significantly higher in the neuropathic pain group compared to the other two groups.</td>
<td></td>
</tr>
<tr>
<td>Villiger et al. 2013</td>
<td>Switzerland</td>
<td>Pre-Post</td>
<td>N=14</td>
<td>Population: Mean age: 52.7 yr; Level of severity: AIS C=2, AIS D=12; Type of pain: neuropathic, mixed. Intervention: Intense virtual reality training was provided to patients with chronic incomplete SCI. Participants were asked to complete four tasks designed to work lower limbs through virtual controlled movement sensors for</td>
<td>1. Decrease in pain intensity and unpleasantness was found post treatment and follow-up (p&lt;0.05). 2. Of those with neuropathic pain, 5 out of 9 participants reached MCID post treatment and retained improvement at follow up.</td>
<td></td>
</tr>
</tbody>
</table>
Author Year  
Country  
Research Design  
Score  
Total Sample Size

| Gustin et al. 2008  
Australia  
Pre-Post  
N=15 |
|---|
| Methods:  
45 min for 16 to 20 sessions over a 4 wk period.  
**Outcome Measures:** Neuropathic Pain Scale (NPS). |
| Population:  
Mean age: 40 yr; Gender: males=15, females=0; Injury etiology: SCI=15; Type of pain: neuropathic.  
**Intervention:** All participants were trained in movement imagery for seven days. Each participant was asked to imagine right ankle plantarflexion and dorsiflexion for 8 min.  
**Outcome Measures:** McGill Pain Questionnaire (MPQ), Visual Analogue Scale (VAS). |
| 1. Individuals with neuropathic pain reported a significant increase in pain intensity during movement imagery, p<0.01.  
2. Individuals without neuropathic pain reported a significant increase in non-pain intensity during movement imagery, p<0.01. |

| Moseley 2007  
UK  
Pre-Post  
N=5 |
|---|
| Methods:  
Individuals with SCI (n=5) engaged in: (1) virtual walking exercise; (2) guided imagery with a psychologist who took them through a scene in which they were pain free and doing something they liked; (3) watching an animated film. During the second part of the study, participants performed 10 min of virtual walking on 15 consecutive weekdays.  
**Outcome Measures:** McGill Pain Questionnaire (MPQ), Visual Analogue Scale (VAS). |
| Population:  
Mean age: 32.2 yr; Level of injury: T=1, L=4; Type of pain: neuropathic.  
**Intervention:** Individuals with SCI (n=5) engaged in: (1) virtual walking exercise; (2) guided imagery with a psychologist who took them through a scene in which they were pain free and doing something they liked; (3) watching an animated film. During the second part of the study, participants performed 10 min of virtual walking on 15 consecutive weekdays.  
**Outcome Measures:** McGill Pain Questionnaire (MPQ), Visual Analogue Scale (VAS). |
| 1. Pain decreased by approximately 65% with virtual walking; less so for guided visual imagery and film viewing.  
2. The amount of time to return to pre-task pain VAS after virtual walking was 34.9 min; after guided imagery 13.9 min; and after watching a film 16.3 min.  
3. The decrease in perceived foreignness of the legs was 43 mm during virtual walking, 4 mm during guided imagery, and 3 mm while watching the film.  
4. Change in foreignness was related to change in pain during virtual walking (p=0.04).  
5. During the 3-wk trial of virtual walking, overall pre-task pain gradually decreased; and pain relief gradually increased; these effects persisted at 3 mo follow-up. |

**Discussion**

Two studies examined the effect of visual illusion in combination with transcranial direct current stimulation (tDCS; Soler et al. 2010; Kumru et al. 2012). Soler et al. (2010) examined the effectiveness of visual imagery for neuropathic pain post SCI. The authors found the greatest improvement in pain perception, pain reduction, ability to work, perform daily tasks, enjoyment, interference of sleep in the combined tDCS and visual illusion group (p<0.05). Thirty percent of participants in this combined group also reported a 30% or more improvement in pain intensity. The visual illusion group reported significant improvement in neuropathic pain intensity on the last day of treatment (p=0.02); however, the effect was not maintained over 12 weeks. One cohort study (Kumru et al. 2012) found that combined transcranial direct current stimulation and visual imagery may improve pain intensity among individuals with neuropathic pain post SCI.

Two studies examined virtual walking in improving neuropathic pain post SCI (Moseley et al. 2007; Jordan et al. 2016). Moseley (2007) reported on five individuals with both a T12-L3 paraplegia (AIS B) and neuropathic pain who engaged in a virtual activity, where they were led through a guided walking exercise, visualizing that they were walking pain free. Of the four subjects who completed the trial (one patient withdrew from the study earlier due to distress),
there was a mean 42 mm reduction in neuropathic pain following individual treatments, and 53 and 42 mm reductions immediately and three months following virtual walking daily for three weeks based on a 100 mm visual analog scale. Control treatments were visual imagery alone, and watching a movie, both of which resulted in less dramatic pain reduction; however, no statistical comparisons were done. Jordan et al. (2016) compared virtual walking with virtual wheeling. The study found that those in the virtual walking group had a significant decrease in their neuropathic pain symptoms.

Viliger et al. (2013) provided virtual reality training in which participants were asked to complete four lower limb movement tasks. The study found significant decrease in pain intensity post treatment. Gustin et al. (2008) involved the participants to imagine right ankle plantarflexion and dorsiflexion for eight minutes. In contrast to the studies above, a significant increase in neuropathic pain intensity post guided visual imagery, (p<0.01).

Conclusion

There is level 1 (Soler et al. 2010) that visual illusion combined with tDCS results in improvement of post SCI pain. There is level 2 (Jordan et al. 2016) evidence that virtual walking reduced post SCI neuropathic pain. There is level 4 (Viliger et al. 2013) evidence that virtual reality related lower limb tasks may reduce pain post SCI. There is level 4 evidence (Gustin et al. 2008) that visual imagery of ankle movements is not sufficient to reduce pain post SCI.

| Visual illusion combined with tDCS results in improvement of pain post SCI | Virtual reality lower limb training may reduce pain post SCI | Virtual walking reduces neuropathic pain post SCI | Visual imagery of ankle movements does not reduce pain post SCI |

9.7 Transcranial Direct Current Stimulation Post SCI Pain

Transcranial Direct Current Stimulation (tDCS) ability to relieve pain has been studied previously; However, it’s mechanism is still not completely understood. It is believed to play a role through its modulatory affect on the central pathways targeted by antidepressants (Knechtel et al. 2013).

Table 15 Transcranial Direct Current Stimulation Post-SCI Pain

<table>
<thead>
<tr>
<th>Author Year Country</th>
<th>Research Design Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ngernyam et al. 2015 Thailand RCT Crossover PEDro=8 N=20</td>
<td>Population: Mean age: 44.5 yr; Gender: males=15, females=5; Level of injury: paraplegia=13, quadriplegia=7; Level of severity: incomplete=11, complete=9; Mean time since injury: 54.7 mo; Type of pain: neuropathic. Intervention: Participants received active and sham anodal transcranial direct current stimulation (tDCS) over the left primary motor area (M1) in a randomized</td>
<td>1. For pain intensity, there was a significant main effect for time (p&lt;0.001) and significant time x condition interaction (p=0.031). 2. Active tDCS showed a significant reduction in pain intensity after treatment (p&lt;0.001) while sham tDCS did not (p=0.096). 3. Active tDCS showed significantly greater reduction in pain intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author Year</td>
<td>Country</td>
<td>Research Design</td>
<td>PEDro Score</td>
<td>Total Sample Size</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Wrigley et al. 2013</td>
<td>Australia</td>
<td>RCT</td>
<td>PEDro=9</td>
<td>N=10</td>
</tr>
<tr>
<td>Soler et al. 2010</td>
<td>Spain</td>
<td>RCT</td>
<td>PEDro=8</td>
<td>N=40</td>
</tr>
<tr>
<td>Author Year</td>
<td>Country</td>
<td>Research Design</td>
<td>Score</td>
<td>Total Sample Size</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>----------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Outcome Measures:** Numeric Rating Scale (NRS).

5. Transcranial DCS sessions were found to be safe, with minor side effects including mild headache.

**Effect Sizes:** Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- and post-intervention data.

**Outcome Measures:**
- **Numeric Rating Scale (NRS):**
  - NRS - Overall pain
  - NRS - Continuous pain
  - NRS - Paroxysmal pain
  - NRS - Allodynia
  - NRS - Dysesthesia

**Effect Sizes:**
- Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- and post-intervention data.

Soler et al. 2010; tDCS + VI vs Placebo

- NRS - Overall pain
- NRS - Continuous pain
- NRS - Paroxysmal pain
- NRS - Allodynia
- NRS - Dysesthesia
- BPI - General activity
- BPI - Mood
- BPI - Work/Tasks
- BPI - Sleep
- BPI - Life enjoyment
- BPI - Mobility
- BPI - Relationships

- NRS - 0.24 (0.04, 0.12)
- BPI - 0.72 (0.67, 0.78)
- BPI - 0.68 (0.63, 0.73)
- BPI - 0.57 (0.52, 0.62)
- BPI - 0.39 (0.34, 0.43)
- BPI - 0.30 (0.25, 0.35)
- BPI - 0.28 (0.23, 0.33)

- NRS - 0.87 (0.85, 0.90)
- BPI - 1.30 (1.26, 1.34)
- BPI - 1.26 (1.22, 1.30)
- BPI - 0.67 (0.62, 0.72)
- BPI - 0.52 (0.47, 0.57)
- BPI - 0.30 (0.25, 0.35)
- BPI - 0.28 (0.23, 0.33)

- NRS - 2.47 (1.31, 3.64)
- BPI - 1.76 (0.72, 2.79)
- BPI - 1.71 (0.68, 2.73)
- BPI - 1.87 (0.82, 2.92)
- BPI - 1.56 (0.56, 2.56)
- BPI - 0.99 (0.71, 1.29)

Soler et al. 2010; tDCS vs Placebo

- NRS - 0.24 (0.04, 0.12)
- BPI - 0.72 (0.67, 0.78)
- BPI - 0.68 (0.63, 0.73)
- BPI - 0.57 (0.52, 0.62)
- BPI - 0.39 (0.34, 0.43)
- BPI - 0.30 (0.25, 0.35)
- BPI - 0.28 (0.23, 0.33)

- NRS - 0.87 (0.85, 0.90)
- BPI - 1.30 (1.26, 1.34)
- BPI - 1.26 (1.22, 1.30)
- BPI - 0.67 (0.62, 0.72)
- BPI - 0.52 (0.47, 0.57)
- BPI - 0.30 (0.25, 0.35)
- BPI - 0.28 (0.23, 0.33)

- NRS - 2.47 (1.31, 3.64)
- BPI - 1.76 (0.72, 2.79)
- BPI - 1.71 (0.68, 2.73)
- BPI - 1.87 (0.82, 2.92)
- BPI - 1.56 (0.56, 2.56)
- BPI - 0.99 (0.71, 1.29)
<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fregni et al. 2006 USA RCT PEDro=9 N=17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Population:</strong> Type of pain: neuropathic.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Intervention:</strong> Subjects received either sham (10 sec of stimulation with same procedure but then turned off) or active tDCS (2 mA, 20 min for 5 days).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Outcome Measures:</strong> Visual Analogue Scale (VAS).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Treatment produced significant decrease in pain scores over time (p&lt;0.0001).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. The largest pain reduction was noted after session five; effect decreased during follow-up, though pain scores remained lower than baseline scores.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. There was no significant effect of treatment on either anxiety or depression scores in either group.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Effects on cognitive function similar for tDCS and sham.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon et al. 2014 Korea Prospective Controlled Trial N=16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Population:</strong> Mean age: 44.1 yr; Gender: males=12, females=4; Time since injury: &gt;6 mo; Type of pain: neuropathic.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Intervention:</strong> SCI individuals with chronic neuropathic pain received either active or sham transcranial direct current stimulation for 20 min, 2x/day for 10 days.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Outcome Measures:</strong> Numeric Rating Scale (NRS), Patient Global Impression of Change (PGIC).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Individuals in the active group had significant reduction in pain intensity post treatment (p=0.016).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 2 individuals in the treatment group experienced reduction in pain intensity of greater than 30%, with the group average of 22.9% reduction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. No significant difference was seen between the two groups in PGIC.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kumru et al. 2013 Spain Cohort N=52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Population:</strong> Age range: 25-69 yr; Gender: males=34, females=18; Type of pain: neuropathic and musculoskeletal, with a sub analysis of neuropathic.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Intervention:</strong> Three cohorts of individuals (group 1 (n=18): SCI neuropathic pain; group 2 (n=20): SCI non-neuropathic pain; group 3 (N=14): healthy matched) underwent daily transcranial direct current stimulation along with visual illusion therapy for 2 wk. The visual illusion involved the participant seated viewing a video of the matching gender walking on a treadmill.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. SCI individuals with neuropathic pain had a 37.4% improvement in pain intensity post treatment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 13 of 18 individuals in the neuropathic group reported 50% decrease in pain intensity post treatment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Evoked pain perception was significantly lower in the neuropathic pain group compared to SCI, nonneuropathic and healthy controls.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Pain threshold was significantly higher in the neuropathic pain group compared to the other two groups.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion

Despite the fact that tDCS is a relatively new treatment for post-SCI pain, several studies have been published. Three studies suggest there is a time effect of tDCS on reducing pain post SCI (Fregni et al 2006; Kumru et al. 2013; Yoon et al. 2014). Ngernyan et al (2015) found that active tDCS was more effective in reducing pain intensity compared to sham treatment. However, Fregni et al. (2006) and Yoon et al. 2014) found no such group effect. Soler et al. (2010) found that participants in the combined tDCS and visual illusion group had greater reduction in pain intensity then either the visual illusion group alone or the sham group.

Conclusion

*There is conflicting evidence (from randomized controlled trials; Fregni et al. 2006; Ngernyan et al. 2015; Soler et al. 2010; Wrigley et al. 2013) for the benefits of transcranial direct current stimulation in reducing post-SCI pain.*

Transcranial direct current stimulation may be effective in reducing post SCI neuropathic pain.

9.8 Transcranial Electrical Stimulation Post SCI Pain

Transcranial Electrical Stimulation (TCES) treatment involves applying electrodes to an individual’s scalp to allow electrical current to be applied and presumably stimulate the underlying cerebrum (Tan et al. 2006).

Table 16 Transcranial Electrical Stimulation Post-SCI Pain

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tan et al. 2006</td>
<td>USA</td>
<td>RCT</td>
<td>PEDro=10 N=38</td>
<td>Population: Type of pain: neuropathic and musculoskeletal. <strong>Intervention:</strong> Subjects received 1 hr Transcranial Electrical Stimulation (TCES) or sham TCES for 21 days to treat neuropathic or musculoskeletal pain. Following this, the control group was offered the opportunity to participate in an open-label TCES study.</td>
<td>Outcome Measures: Brief Pain Inventory (BPI).</td>
</tr>
</tbody>
</table>
Population: Type of pain: neuropathic and musculoskeletal.

Intervention: SCI subjects randomly assigned to one of two groups. Treatment group received transcranial electrostimulation (TCES) 2x/day for 4 days, while controls received sham treatment. After an 8 wk washout period, treatments were reversed for sham treatment group only; thus, during the second half of the observation period, all received active treatment. Three subjects left the study early, two because of interactions between TCES and medications.

Outcome Measures: Short form McGill Pain Questionnaire (SF-MPQ), State Trait Anxiety Inventory (STAI), Beck Depression Inventory (BDI).

Effect Sizes: Forest plot of standardized mean differences (SMD±95% C.I.) as calculated from pre- and post-intervention data.

1. During first part of the study, those on TCES reported less severe pain versus baseline (p=0.0016); controls reported no change.

2. During phase two of study, control group (now receiving TCES) also reported significantly less pain (p=0.005).

3. Treatment group used fewer medications (analgesics and antidepressants) while receiving TCES (p<0.05).

4. Groups did not differ in pre-morbid psychological states (i.e., STAI, BDI) nor was treatment effect associated with mood in either group.

Discussion

Tan et al. (2006) conducted a double-blind RCT with 38 SCI participants with either chronic musculoskeletal or neuropathic pain receiving either active TCES or inactive TCES (sham control) over 21 days. The electrical stimulation was set at a subthreshold level ensuring that patients were blind to their treatment group. The study found that SCI patients receiving transcranial electrotherapy stimulation (n=18) experienced a significant reduction in post-SCI
neuropathic and musculoskeletal average daily rating of pain intensity (p=0.03); however, there was no significant reduction in pain as noted on the Brief Pain Inventory (BPI).

Capel et al. (2003) reported that TCES resulted in lower pain scores on the McGill Pain Questionnaire for those in the treatment group (n=15), while those in the control group (n=15) reported no change. No statistical differences were noted across different pain types, although the authors did comment that subjects had greater relief of visceral pain following each active four-day treatment phase of the study. TCES was associated with a reduction in the use of analgesics and antidepressants.

**Conclusion**

*There is evidence level 1a evidence (from two randomized controlled trials; Capel et al. 2003; Tan et al. 2006) for the benefits of transcranial electrical stimulation in reducing neuropathic and musculoskeletal post-SCI pain.*

| Transcranial electrical stimulation is effective in reducing post SCI pain. |

### 9.9 Static Magnetic Field Therapy Post SCI Pain

**Table 17 Static Magnetic Field Therapy Post-SCI Pain**

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panagos et al. 2004 USA Pre-Post N=8</td>
<td></td>
<td></td>
<td></td>
<td>Population: Type of pain: nociceptive musculoskeletal shoulder pain.</td>
<td>1. On SF-MPQ, pain intensity decreased (p&lt;0.01).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention: A concentric field type magnet (500 gauss) was placed over one shoulder for 1 hr.</td>
<td>2. Significant decreases also were noted in severity of sharp and stabbing pain, and degree of tenderness (p=0.033, p=0.02, and p=0.021, respectively).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Outcome Measures: Short form McGill Pain Questionnaire (SF-MPQ), Visual Analogue Scale (VAS).</td>
<td>3. Pain intensity on VAS and in response to pressure did not change significantly with magnet application.</td>
</tr>
</tbody>
</table>

**Discussion**

Static Magnetic Field (SMF) therapy has been studied as a treatment for pain post SCI. Panagos et al. (2004) in a pre-post study involving eight individuals, on average 12 years’ post injury, found that placing a static field magnet of 500 gauss over a self-identified ‘trigger point’ resulted in patients reporting less stabbing, sharp and tender pain (p<0.05); however, there was no significant change noted on a VAS pain severity scale. These results are severely limited by the uncontrolled study design and relatively few study participants.

**Conclusion**

*There is level 4 evidence (from one pre-post study; Panagos et al. 2004) that using a static field magnet helps to reduce reports of sharp, stabbing nociceptive shoulder pain but does not significantly reduce the VAS score of pain in individuals with a SCI.*
9.10 Transcutaneous Electrical Nerve Stimulation for Pain Post SCI

Transcutaneous Electrical Nerve Stimulation (TENS) is commonly used as an electroanalgesic and has been shown to be efficacious in the treatment of chronic musculoskeletal pain (Johnson et al. 2007). TENS is believed to preferentially stimulate large alpha sensory nerves and reduce pain at the presynaptic level in the dorsal horn of the spinal cord through nociceptive inhibition (Cheing et al. 1999).

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozkul et al. 2015</td>
<td>Turkey</td>
<td>RCT Crossover</td>
<td>PEDro=5</td>
<td>N=24</td>
<td>Population: Mean age: 32.3 yr; Gender: males=18, females=6; Level of injury: paraplegia=6, quadriplegia=18; Level of severity: incomplete=7, complete=17; Mean time since injury: 12.5 mo; Type of pain: neuropathic. Intervention: Participants received transcutaneous electrical nerve stimulation (TENS) and visual illusion (VI) in a randomized sequence. Each treatment was delivered for 2 wk with a 1 wk washout period in between. Outcomes were assessed pre-and post each treatment period. Outcome Measures: Visual Analogue Scale - Pain Intensity (VAS-PI), Neuropathic Pain Scale (NPS), Brief Pain Inventory (BPI).</td>
<td>1. There was a reduction in VAS-PI immediately after VI (p=0.07) and TENS (p=0.08), but there was no statistically significant group effect. 2. There was a significant reduction in pain 2wk post TENS (p=0.04) but not 2 wk post VI (p&gt;0.05). 3. On NPS, VI significantly decreased the following pain types: hot (p=0.047), sharp (p=0.02), unpleasant (p=0.03), and deep (p=0.047); TENS did not show any significant effects. 4. On BPI, VI significantly decreased the negative effect of pain on moving ability (p=0.04) and TENS significantly decreased the negative effect of pain on mood (p=0.03), relationships (p=0.04), and sleep (p=0.04).</td>
</tr>
</tbody>
</table>
### Author Year Country Research Design Score Total Sample Size

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norrbrink 2009</td>
<td>Sweden</td>
<td>Prospective Controlled Trial</td>
<td>24</td>
<td>N=24</td>
</tr>
</tbody>
</table>

#### Methods

Population: Mean age: 47.2 yr; Gender: males=20, females=4; Level of injury: C=13, T=8, L=3; Type of pain: neuropathic, musculoskeletal.

Intervention: Patients were provided with either low frequency (2Hz) or high frequency (80Hz) transcutaneous electrical nerve stimulation (TENS) stimulation for 30-40 min 3x/day for 2 wk followed by a 2 wk washout period and switched stimulation frequency.

Outcome Measures: Numeric Rating Scale (NRS).

#### Outcome

1. No significant difference was found between the two modes of stimulation.
2. 21% reported reduction of greater than or equal to 2 units of general pain intensity (more than 1.8 considered significant clinical reduction), 29% in worst pain intensity and 33% in pain unpleasantness.
3. 29% reported a favorable effect on the global pain relief scale from HF and 38% from LF stimulation.

---

### Davis & Lentini 1975

USA

Case Series

N=31

#### Methods

Population: Type of pain: neuropathic.

Intervention: Patients were tested with transcutaneous nerve stimulation.

Outcome Measures: Subjective patient report, Transcutaneous electrical nerve stimulation (TENS).

#### Outcome

1. Those with a cervical injury (n=4) were not successfully treated with TENS. About 1/3 of patients (n=11) felt that the treatment was a success, with those experiencing at-injury site pain most effectively treated.

---

### Discussion

Ozkul et al. (2015) found no significant difference between TENS or visual illusion treatment. Norrbrink (2009) in a crossover study examined the effect of low frequency (2 Hz) or high frequency (80 Hz) TENS stimulation. The authors reported no significant difference between the two treatments in improving neuropathic pain. Davis and Lentini (1975) reported on a series of
patients (n=31) in whom transcutaneous nerve stimulation was applied to painful areas. Among those with a thoracic (n=11) or caudal level injury (n=16), only 36% reported that the treatment was successful in reducing pain at the injury site; meanwhile, none of those with a cervical injury (n=4) experienced any reduction in pain. In general, TENS was not deemed effective for radicular or below-level injury site pain.

**Conclusion**

There is level 4 evidence (from one case series study; Davis & Lentini 1975) that transcutaneous electrical nerve stimulation reduced at-the-injury site pain in only a minority of patients with thoracic or cauda equina SCI, but not those with cervical SCI.

Transcutaneous electrical nerve stimulation may reduce pain at site of injury in patients with thoracic but not cervical injury.

### 9.11 Transcranial Magnetic Stimulation

Transcranial magnetic stimulation (TMS) is a non-invasive and relatively safe technology where electromagnetic currents in a coil produces magnetic pulses which crosses the cranium and induces neuron depolarization (Defrin et al. 2007). Magnetic stimulation of the motor cortex has been shown to attenuate post-stroke pain (Migita et al. 1995).

**Table 19 Transcranial Magnetic Stimulation**

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yilmaz et al. 2014</td>
<td>Turkey</td>
<td>RCT</td>
<td>PEDro=7</td>
<td>$N_{\text{initial}}=17$, $N_{\text{final}}=16$</td>
<td><strong>Population:</strong> Mean age: 38.6 yr; Gender: males=16, females=0; Level of injury: paraplegia=16; Level of severity: incomplete=6, complete=10; Mean time since injury: 13.4 yr; Type of pain: neuropathic. <strong>Intervention:</strong> Participants were randomized to receive active (treatment, n=9) or sham (control, n=7) repetitive transcranial magnetic stimulation (rtMS, 1x/day, 10 days). Outcomes were assessed pre-and post treatment, and at 6 wk and 6 mo follow-up. <strong>Outcome Measures:</strong> Visual Analogue Scale – Pain Intensity (VAS-PI).</td>
<td>1. There was a significant reduction in VAS-PI score in the treatment group at 10 days and 6 wk (p=0.004) and in the control group at 10 days (p=0.02). 2. There was no significant difference in VAS-PI score between groups at baseline, 10 days, 6 wk, or 6 mo (p&gt;0.05).</td>
</tr>
<tr>
<td>Jette et al. 2013</td>
<td>Canada</td>
<td>RCT</td>
<td>PEDro=7</td>
<td>N=16</td>
<td><strong>Population:</strong> Mean age: 50 yr; Gender: males=11, females=5; Injury etiology: SCI=16; Level of injury: quadriplegia=4, paraplegia=12; Type of pain: neuropathic. <strong>Intervention:</strong> SCI individuals with chronic neuropathic pain were randomly assigned to receive 3 sessions of active or sham repetitive transcranial magnetic stimulation (rtMS) over hand or leg area. Participants were then crossed over to receive the alternative treatment.</td>
<td>1. Significant reduction in pain was seen in both hand (p=0.003) and leg (p=0.047) conditions 20 min post treatment; while no significant difference was seen in control group. 2. Pain improvement lasted up to 48 hours in both the hand (p=0.021) and leg (p=0.008). 3. Those with incomplete injury in the hand condition had greater</td>
</tr>
<tr>
<td>Author Year</td>
<td>Country</td>
<td>Research Design</td>
<td>Score</td>
<td>Total Sample Size</td>
<td>Methods</td>
<td>Outcome</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------</td>
<td>----------------</td>
<td>-------</td>
<td>-------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Kang et al. 2009</td>
<td>South Korea</td>
<td>RCT</td>
<td>PEDro=9</td>
<td>N=13</td>
<td><strong>Population:</strong> Mean age: 54.8 yr; Gender: males=11, females=5; Injury etiology: SCI=13; Level of injury: quadriplegia=5, paraplegia=6; Type of pain: neuropathic. <strong>Intervention:</strong> SCI individuals with chronic neuropathic pain were randomized to receive 5 sessions of repetitive transcranial magnetic stimulation (rTMS) or sham rTMS. Participants were then crossed over to receive the alternative treatment after a 12 wk washout period. <strong>Outcome Measure:</strong> Numeric Rating Scale (NRS). Brief Pain Inventory (BPI).</td>
<td>1. No significant effect of time or group was seen for rTMS on NRS scores post treatment and at 3 wk follow up. 2. Significantly lower NRS scores for worst pain were seen 1 wk post rTMS period compared to those with sham rTMS, p=0.028. 3. No significant effect of time or group was seen on the BPI.</td>
</tr>
<tr>
<td>Defrin et al. 2007</td>
<td>Israel</td>
<td>RCT</td>
<td>PEDro=10</td>
<td>N=12</td>
<td><strong>Population:</strong> Mean age: 54 yr; Gender: males=7, females=4; Injury etiology: SCI=11, other=1; Type of pain: neuropathic. <strong>Intervention:</strong> Patients were randomly placed into two groups: real or sham 10 daily motor TMS treatments (500 trains at 5 Hz for 10 sec; total of 5000 pulses at intensity of 115% of motor threshold) over a 2 wk period, using figure-of-8 coil over the vertex. <strong>Outcome Measure:</strong> Chronic pain intensity (visual analog scale [VAS]), Chronic pain experience (McGill Pain Questionnaire [MPQ]), Pain threshold, Level of depression (Beck Depression Inventory [BDI]).</td>
<td>1. The real and sham TMS stimulated similar, significant decreases in VAS scores (p&lt;0.001) following all of the 10 treatment sessions, and in VAS and MPQ scores following the final treatment series. 2. The reduction in MPQ scores in the real TMS group continued during the follow-up period. 3. There was no significance between group differences in the magnitude of pain reduction. 4. At follow-up, patients in the TMS group reported a 30% reduction in chronic pain intensity, compared to a 10% pain reduction reported by patients in the sham TMS group. 5. A significant increase in heat-pain threshold was found only for patients in the real TMS group (4°C, p&lt;0.05) at the end of the series. 6. There was a significant difference in the magnitude of change in pain threshold between the real and sham TMS groups (p&lt;0.05). 7. Real and sham TMS groups showed a significant decrease in BDI values following the treatment period in comparison to pre-treatment BDI values (p&lt;0.01). 8. This reduction was maintained by both groups at follow-up (p&lt;0.01). 9. Only patients in the TMS treatment group exhibited a decreased level of depression during follow-up in comparison to the values at the end of treatment (p&lt;0.05).</td>
</tr>
</tbody>
</table>

**Effect Sizes:** Forest plot of standardized mean differences (SMD±95% C.I.) as calculated from pre- and post-intervention data.
Discussion

Four studies found no significant difference between rTMS and sham rTMS in reducing average pain intensity among people with SCI (Defrin et al. 2007; Jette et al 2013; Kang et al. 2009 Yilmaz et al 2014). One study found that those in the rTMS group had significantly lower worst pain compared to those in the sham rTMS group (Kang et al. 2009).

Conclusion

There is level 1a evidence (from four randomized controlled trials; Jette et al. 2013; Defrin et al. 2007) that rTMS may not significantly reduce average pain intensity post-SCI.

There is level 1b evidence (from one RCT Kang et al. 2009) that rTMS significantly reduces worst pain compared to sham rTMS.

10.0 Pharmacological Management of Post-SCI Pain

Pharmacological interventions are the standard treatment for SCI pain. The limited effectiveness of non-pharmacological treatments has contributed to increasing use of pharmacological interventions to deal with what is often very severe and disabling pain.

10.1 Pharmacological Measures Overall

Table 20 Pharmacological Interventions and Post-SCI Pain

<table>
<thead>
<tr>
<th>Author Year; Country Research Design Score Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population: Mean age: 40.6 yr; Gender: males=94, females=26; Mean time since injury: 9.8 yr. Intervention: Individuals with SCI related pain filled out a questionnaire; data from the questionnaire was analysed by dividing individuals into two groups: those that received pain treatment and those that did not.</td>
<td>1. Overall 59.2% of participants used pharmacological or non-pharmacological treatments to control pain. 40.8% indicated they had not used nor had they been prescribed any medication for pain. 2. Pain Severity: Pain severity was found to be higher for those who had received pain medications (PM)</td>
<td></td>
</tr>
<tr>
<td>Author Year; Country</td>
<td>Research Design Score Total Sample Size</td>
<td>Methods</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td><strong>Outcome Measures:</strong> Sociodemographic data and characteristics of injury, Intensity of pain, Location of pain, Quality of pain, Allodynia (pain in response to a stimulus that would not provoke pain), Multidimensional Pain Inventory (MPI) (designed to assess the impact of pain and adaptation to chronic pain), Difficulty in dealing with pain and pain treatments.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.9±1.3, p=0.001) compared to those who had not used any pain treatment. The intensity of pain was higher for those on PM than for those not on PM (p=0.022).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Pain Locations: Those using PM reported more painful areas than those not using PM (p&lt;0.001) with frontal/genital pain reported more often (p&lt;0.000).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Quality of Pain: Those on PM used more descriptive adjectives to describe their pain compared to those not using PM (p=0.031).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Difficulty in Dealing with Pain: Those using PM reported having more difficulty dealing with pain than those not using PM (p&lt;0.000).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Pain impact: Those using PM had higher scores for the pain severity scale and the life interference scale compared to the group not using PM (p&lt;0.002).</td>
<td></td>
</tr>
</tbody>
</table>

**Discussion**

Widerström-Noga and Turk (2003), not unexpectedly, found that SCI patients with more severe pain, in more locations, those with allodynia or hyperalgesia, and those in whom the pain was more likely to interfere with activities were more likely to use pain medications.

Trials of simple non-narcotic analgesics, nonsteroidal anti-inflammatory drugs (NSAIDs), acetaminophen or non-narcotic “muscle relaxants” are common clinical practice in SCI pain. Unfortunately, these medications are often ineffective in complete SCI neuropathic pain relief and have potential risks such as gastric ulceration with prolonged use.

For neuropathic or “central” pain seen following SCI, psychotropic drugs such as antidepressants and anticonvulsants are reportedly the most effective (Donovan et al. 1982). Despite increasing popularity, few drugs (with the exception of Gabapentin and pregabalin) have regulatory approval for use in neuropathic pain and selection for individual patients is largely based on anecdotal evidence, of off-labelled use.

**10.2 Anticonvulsants in SCI Pain**

Anticonvulsant medications are often utilized in treating neurogenic or deafferent pain following SCI based on the theory that these drugs alter sodium conduction in uncontrolled hyperactive neurons (“convulsive environment”) in the spinal cord. Carbamazepine has been reported as being somewhat effective in the paroxysmal, sharp, shooting pain of trigeminal neuralgia (Swerdlow 1984). Gibson and White (1971) described relief resulting from carbamazepine treatment in two cases of L2 and T8 SCI with intractable pain below the level of SCI. A similar effect of Carbamazepine (200 mg 2x daily in combination with Amitriptyline 50 mg three times daily) was reported in a complete C8 patient with dysesthesia below the level of the injury...
(Sandford et al. 1992). Again, controlled studies utilizing these drugs in SCI pain are lacking with the exception of gabapentin and pregabalin.

Gabapentin and pregabalin are now regarded as first-line treatments of neuropathic pain (Ahn et al. 2003; Moulin et al. 2007). Gabapentin and pregabalin have been recommended as first line treatments for neuropathic pain in Canadian and international guidelines (Gajraj 2007). The mechanism of action for Pregabalin and Gabapentin is through binding the alpha-2 delta receptors in the central nervous system. These receptors are present on the presynaptic nerve terminals. When bound by gabapentin or pregabalin they decrease the influx of calcium into the presynaptic terminal thereby decreasing the release of excitatory neurotransmitters.

Gabapentin and pregabalin appear to potentiate GABA effects centrally through enhancement of GABA synthesis and release. Levendoglu et al. (2004) noted that neuropathic pain is ultimately generated by excessive firing of pain-mediating nerve cells, insufficiently controlled by segmental and non-sequential inhibitory circuits. Gabapentin and pregabalin work by increasing GABA and reducing the release of glutamate thereby suppressing the sensitivity of N-methyl-D-aspartate (NMDA) receptor. This has been shown to reduce neuronal hyper-excitability recorded at the spinal dorsal horn near the level of injury (Ahn et al. 2003). Gabapentin and pregabalin are relatively well tolerated with only a few transient side effects, lack of organ toxicity, and no evidence of significant interaction with other medications (Levendoglu et al. 2004; Gajraj 2007).

### Table 21 Anticonvulsants for SCI Pain

<table>
<thead>
<tr>
<th>Author Year Country</th>
<th>Research Design Score</th>
<th>Total Sample Size</th>
<th>Gabapentin</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaydok et al. 2014</td>
<td>RCT PEDro=7 N=28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Population:</strong> Mean age: 42.8 yr; Mean time since injury: 35.3 mo; Mean duration of pain: 29.3 mo; Type of pain: neuropathic. <strong>Intervention:</strong> Participants were randomly allocated to the gabapentin or pregabalin group. Those in the gabapentin group received an initial dose of 300 mg/day which was titrated to a max dose of 3600 mg/day by the 4th wk. Those in the pregabalin group received an initial dose of 150mg/day which was titrated to a max of 600mg/day by the 4th wk. These dosages were maintained for 8 wk. Patients then underwent a 2 wk washout period and were crossed over to the alternative group. <strong>Outcome Measures:</strong> Visual Analog Scale (VAS), Neuropathic Pain Scale (NPS). <strong>Effect Sizes:</strong> Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- and post-intervention data.</td>
<td>No significant difference in VAS between gabapentin and pregabalin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author Year</td>
<td>Country</td>
<td>Research Design</td>
<td>Score</td>
<td>Total Sample Size</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>-----------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Rintala et al. 2007</td>
<td>USA</td>
<td>RCT</td>
<td>PEDro=10</td>
<td>N=38</td>
</tr>
<tr>
<td>Levendoglu et al. 2004;</td>
<td>Turkey</td>
<td>RCT Crossover</td>
<td>PEDro=9</td>
<td>N=20</td>
</tr>
</tbody>
</table>

### Methods

**Kaydok et al. 2014**: Gabapentin (treatment) vs Placebo (control)

<table>
<thead>
<tr>
<th>VAS</th>
<th>NPS - Intensity</th>
<th>NPS - Sharp</th>
<th>NPS - Hot</th>
<th>NPS - Dull</th>
<th>NPS - Cold</th>
<th>NPS - Sensitive</th>
<th>NPS - Unpleasant</th>
<th>NPS - Deep</th>
<th>NPS - Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.08 (0.56,0.73)</td>
<td>0.03 (0.56,0.67)</td>
<td>0.02 (0.56,0.66)</td>
<td>0.01 (0.56,0.67)</td>
<td>0.02 (0.56,0.66)</td>
<td>0.02 (0.56,0.66)</td>
<td>0.01 (0.56,0.66)</td>
<td>0.08 (0.56,0.67)</td>
<td>0.05 (0.56,0.68)</td>
</tr>
</tbody>
</table>

**Population**: Mean age: 42.6 yr; Gender: males=20, females=2; Injury etiology: SCI=22, other=16; Level of injury: paraplegia=7, tetraplegia=12; Level of severity: AIS A-C=19, AIS D=3; Mean time since injury: 12.6 yr; Mean duration of pain: 7.3 yr. Type of pain: neuropathic.

**Intervention**: Subjects were randomized into one of six groups: 1) gabapentin-amitriptyline-diphenhydramine (GAD; n=7); 2) GDA (n=6); 3) AGD (n=6); 4) ADG (n=6); 5) DGA (n=7); 6) DAG (n=6). Each drug was administered for 9 wk with one washout period and after each drug treatment, for a total of 31 wk. The maximum doses were 50mg 3x/day for amitriptyline, 1200mg 3x/day for gabapentin, and 25mg 3x/day for diphenhydramine (control).

**Outcome Measures**: Center of Epidemiologic Studies Depression Scale Short Form (CESD-SF).

1. No significant difference was seen at 8 wk in subjects with high (≥ 10) baseline CESD-SF scores in:
   - Effectiveness of amitriptyline over gabapentin (p=0.061).
   - Effectiveness of gabapentin over diphenhydramine (p=0.97).
2. Subjects with low (<10) baseline CESD-SF scores showed no significant difference among the medications.

**Population**: Age range: 23-62 yr; Gender: males=13, females=7; Duration of pain range: 6-45 mo; Type of pain: neuropathic.

**Intervention**: Subjects were randomized to gabapentin or placebo for a 4 wk titration period. Following this 4 wk period subjects continued to receive max tolerated doses. After a 2 wk washout period the treatments were switched in a crossover design.

**Outcome Measures**: Neuropathic pain scale (NPS), Visual analog scale (VAS), Lattinen test were used to assess pain and quality of sleep.

1. Both placebo and the gabapentin improved pain scores for the following: pain intensity (p<0.000), shape (p<0.000), hot (p<0.001), unpleasantness (p<0.000), deep and surface pain (p<0.001), at wk 4 and 8 of administration.
2. Intensity of pain decreased significantly for the gabapentin groups during treatment (p<0.001) and the intensity of pain differed between the two groups at all time periods (p<0.001).
3. VAS scores indicated that there was significant pain relief, which began at wk 2 and continued until wk 6 (p<0.05) and pain relief between the two groups at the end of the stable
<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tai et al. 2002</td>
<td>USA</td>
<td>RCT</td>
<td>PEDro=6</td>
<td>N=7</td>
<td>dosing periods was significantly different (p&lt;0.000). More experienced side effects in the treatment group then in the placebo group (p&lt;0.05).</td>
<td></td>
</tr>
<tr>
<td>Ahn et al. 2003</td>
<td>Korea</td>
<td>Pre-Post</td>
<td>N=31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To et al. 2002</td>
<td>Australia</td>
<td>Case Series</td>
<td>N=44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Effect Sizes:** Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- and post-intervention data.

**Population:** Age range: 27-47 yr; Gender: males=6, females=1; Level of injury: C2-T7; Time since injury range: 1 mo-20 yr. Type of pain: neuropathic.

**Intervention:** Subjects with neuropathic pain were treated with gabapentin or placebo.

**Outcome Measures:** Neuropathic Pain Scale (10 categories of pain types).

1. Significant reduction of "unpleasant feeling" with gabapentin versus placebo (p=0.028).
2. Trends of reductions with gabapentin versus placebo for "pain intensity" (p=0.094) and "burning feeling" (p=0.065).

**Population:** Mean age: 45 yr; Gender: males=19, females=12; Level of injury: paraplegia, tetraplegia; Level of severity: complete, incomplete; Mean duration of pain: 10 yr. Type of pain: neuropathic.

**Intervention:** Subjects were started on 300 mg of gabapentin, which was increased over 18 days to 1500 mg, followed by a 5 wk maintenance period. If pain score did not decrease during this time period, meds were increased to 2400 mg/day and 3600 mg/day. Group 1 had <6 mo of pain and group 2 >6 mo.

**Outcome Measures:** Pain and sleep interference scores of the two groups were compared.

1. At the end of the study, both groups showed they had lower mean scores for pain and sleep interference score (p<0.05).
2. Mean pain score for Group 1 decreased more than it did for Group 2 (p<0.05).
3. This score decreased more for Group 1 during wk 2-8 than it did for Group 2 (p<0.05).
4. Mean sleep interference score for Group 1 decreased more than it did for Group 2 (p<0.05).

**Population:** Age range:15-75 yr; Gender: males=28, females=10; Level of injury: paraplegia, tetraplegia; Type of pain: neuropathic.

**Treatment:** Neuropathic pain was treated with gabapentin.

**Outcome Measures:** Level of pain experienced by subjects.

1. 76% of subjects reported some improvement in pain after taking gabapentin.
2. Visual Analogue Scores decreased from 8.86 pre-treatment to 4.13 post-treatment (6 mo later) (p<0.001), with a significant curvilinear trend (p=0.001).
<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putzke et al. 2002</td>
<td>USA</td>
<td>Observational</td>
<td>N=21</td>
<td>Population: Gender: males=16, females=5; Level of injury: paraplegia=14, tetraplegia=7; Level of severity: incomplete=16, complete=5; Type of pain: neuropathic. Intervention: Participants were asked to complete a survey (or interview). Outcome Measures: Numeric Rating Scale (NRS).</td>
<td>1. 67% of patients reported having had a favourable response to gabapentin. 2. Among those reporting a favourable response, side effects were forgetfulness and sedation. 3. Among those interviewed a second time, most who reported a favourable response were using other medications and gabapentin for pain. 4. Side effects like sedation and forgetfulness were common.</td>
<td></td>
</tr>
<tr>
<td>Min et al. 2016</td>
<td>South Korea</td>
<td>RCT Crossover</td>
<td>PEDro=6 N=55</td>
<td>Population: Mean age: 51.7 yr; Gender: males=44, females=11; Level of injury: paraplegia=29, quadriplegia=26; Level of severity: incomplete=45, complete=10; Mean time since injury: 2458 days; Type of pain: neuropathic. Intervention: Participants received pregabalin (300mg/day) and oxcarbazepine (300mg, 2x/day), each for 1-2 wk, provided in a randomized sequence. Participants were divided according presence or absence of evoked pain. Outcomes were assessed before and after each trial. Outcome Measures: Visual Analogue Scale - Pain Intensity (VAS-PI) (electrical pain, burning pain, pricking pain, numbness, allodynia, hyperalgesia).</td>
<td>1. Overall, both pregabalin and oxcarbazepine were effective in relieving all types of pain (p&lt;0.05), and there were no significant differences between medications in effectiveness. 2. Oxcarbazepine was significantly more effective in relieving electrical, burning, and numbness pain in those without evoked pain than those with it (p&lt;0.05). 3. Pregabalin was significantly more effective in relieving burning pain in those without evoked pain than those with it (p&lt;0.05). 4. In those with evoked pain present, pregabalin was significantly more effective than oxcarbazepine in relieving allodynia and hyperalgesia than pregabalin (p&lt;0.001). 5. In those with evoked pain absent, there was no significant difference between medications in effectiveness.</td>
<td></td>
</tr>
<tr>
<td>Kaydok et al. 2014</td>
<td>Turkey</td>
<td>RCT</td>
<td>PEDro=7</td>
<td>Population: Mean age: 42.8 yr; Mean time since injury: 35.3 mo; Mean duration of pain: 29.3 mo; Type of pain: neuropathic.</td>
<td>1. No significant difference in VAS between gabapentin and pregabalin.</td>
<td></td>
</tr>
</tbody>
</table>

**Effect Sizes:** Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- and post-intervention data.
### Cardenas et al. 2013

**Country:** USA  
**Research Design:** RCT  
**PEDro:** 10  
**Total Sample Size:** N=219  

**Intervention:** SCI individuals with neuropathic below level pain for greater than 3 mo were randomized to a 2x/day pregabalin group (up to 600mg/d) or placebo for 12 wk.

**Outcome Measures:** Duration-adjusted average change in pain.

1. Significant improvement in pain was seen in the treatment group compared to placebo, p=0.0003.
2. Significant improvement in pain related sleep interference scores were seen post treatment in the pregabalin group compared to placebo, p<0.05.

### Arienti et al. 2011

**Country:** Italy  
**Research Design:** RCT  
**PEDro:** 6  
**Total Sample Size:** N=47  

**Intervention:** Patients were randomly placed into three groups: pharmacological group (Ph) received 600 mg/day of pregabalin. The pharmacological and osteopathic (PhO) group received 600 mg/day of pregabalin and osteopathical treatment once a wk for the first mo, once every fortnight for the second mo, once during the third month all for 45 min each.

1. Rates of improvement based on the VNS scores were similar across the two treatments (p=0.26).
2. The highest pain relief was seen in the combined pharmacological and osteopathic group compared to the pharmacological alone (p=0.05) and the osteopathic alone (p=0.001).
### Author Year Country Research Design Score Total Sample Size

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vranken et al. 2008</td>
<td>Netherlands</td>
<td>RCT</td>
<td>PEDro=9</td>
<td>N=40</td>
</tr>
<tr>
<td>Sidall et al. 2006</td>
<td>Australia</td>
<td>RCT</td>
<td>PEDro=9</td>
<td>N=137</td>
</tr>
</tbody>
</table>

#### Methods
- by an osteopathic physician. The osteopathic group (OMT) received on the osteopathic treatment described above.

#### Outcome Measures:
- Verbal numeric scale (VNS).

#### Effect Sizes:
- Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- and post-intervention data.

---

#### Population: Treatment group:
- Mean age: 54.2 yr; Gender: males=11, females=9.

#### Control group:
- Mean age: 54.7 yr; Gender: males=10, females=10; Type of pain: neuropathic.

#### Intervention:
- Those in treatment group received escalating doses of pregabalin (150 mg, 300 mg, or 600 mg daily), while the control group received placebo.

#### Outcome Measures:
- Visual Analogue Scale (VAS).

- 82.5% of subjects completed the study.
- Those in the treatment group experienced a decrease in pain (p<0.01) compared to control group.
- With respect to health status and quality of life, treatment group experienced a statistically-significant improvement, in particular on the EQ-5D VAS and EQ-5D utility scores (p<0.01).
- Scores on the SF-36 showed significant improvement in the bodily pain domain (p<0.009) for the treatment group, but not in other domains.

---

#### Population: Treatment group:
- Mean age: 45 yr; Gender: males=19, females=12; Level of injury: paraplegia, tetraplegia; Level of severity: complete, incomplete; Mean duration of pain: 10 yr; Type of pain: neuropathic.

#### Intervention:
- Patients were randomized to either flexible-dose pregabalin 150 to 1.

- The mean baseline pain score was 6.54 in the pregabalin group and 6.73 in the placebo group.
- The mean endpoint pain score was lower in the pregabalin group (4.62) than the placebo group (6.27; p<0.001).
Carbamazepine

**Population:** Mean age: 36 yr; Gender: males=42, females=4; Level of injury: paraplegia=28, quadriplegia=18; Level of severity: incomplete=13, complete=33; Mean time since injury: <2wk.

**Intervention:** Individuals without neuropathic pain were randomized to receive carbamazepine (600mg/d, n=24) or placebo (control, n=22) for 1 mo. Outcomes were assessed pre-and post treatment, and at 3 and 6 mo follow-up.

**Outcome Measures:** Visual Analogue Scale - Pain Intensity (VAS-PI), Short Form 36 Scale (SF-36).

1. At 1 mo, significantly less of the treatment group reported moderate/intense pain (VAS-PI≥4) than the control group (2 vs 8, p=0.024).
2. At 3 mo, more of the treatment group reported moderate/intense pain than the control group, but the difference was not significant (8 vs 6, p=0.498).
3. At 6 mo, less of the treatment group reported moderate/intense pain than the control group, but the difference was not significant (6 vs 8, p=0.298).
4. There was no significant difference between groups in SF-36 scores.

**Effect Sizes:** Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- to post-intervention data and pre-intervention to retention.

Min et al. 2016

**Population:** Mean age: 51.7 yr; Gender: males=44, females=11; Level of injury: 600 mg/day (n=70) or placebo (n=67), administered BID

**Outcome Measures:** Pain scores, Sleep interference, Anxiety scores.

1. Efficacy observed as early as wk 1 and maintained for the duration of the study.
2. The average pregabalin dose after the 3 wk stabilization phase was 460 mg/day.
3. Pregabalin was associated with improvements in disturbed sleep (p<0.001) and anxiety (p<0.05).
4. Mild or moderate, typically transient, somnolence and dizziness were the most common adverse events.

**Effect Sizes:** Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- and post-intervention data.
<table>
<thead>
<tr>
<th>Author Year Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finnerup et al. 2002 Denmark RCT</td>
<td>PEDro=10</td>
<td>N=30</td>
<td>SCI patients with pain at or below the level of injury; Type of pain: neuropathic.</td>
<td>Intervention: A 1 wk baseline period was followed by two treatment periods of 9 wk. Lamotrigine slowly increased to a maximum of 400 mg or placebo separated by a 2 wk washout period. Outcome Measures: Change in median pain score from baseline wk to the last wk of treatment. Thresholds to standardized sensory stimuli using quantitative sensory testing.</td>
<td>1. Twenty-two patients completed the trial. 2. No statistically significant effect of lamotrigine as evaluated in the total sample 3. In patients with incomplete SCI, lamotrigine significantly reduced pain at or below SCI level. 4. Patients with brush evoked alldynia and wind-up-like pain in the area of maximal pain were more likely to have a positive effect to lamotrigine than patients without these evoked pains.</td>
</tr>
<tr>
<td>Finnerup et al. 2009 Denmark RCT</td>
<td>PEDro=7</td>
<td></td>
<td>Mean age: 52.8 yr; Gender: males=29, females=7; Level of injury: C=13, T=19, L=4; Level of severity: AIS A=13, AIS B=2, AIS C=3, AIS D=18;</td>
<td>Levitiracetam treatment showed no significant improvement in median pain intensity compared to placebo treatment (p=0.46).</td>
<td></td>
</tr>
</tbody>
</table>
Author Year Country Research Design Score Total Sample Size  
N=36  
 Type of pain: at level=17, below level=31.  
**Intervention:** Patients were randomized into two 5 wk treatment groups receiving either levetiracetam or placebo tablets. After a 1 wk washout period, individuals were crossed over to the 2nd group. Patients received 500 mg x2 for the first wk, 1000mg x2 in the second wk, and 1500 mg x2 in wk 3-5. Patients were assessed at baseline, end of each treatment and 6 mo follow-up.  
**Outcome Measures:** Neuropathic pain symptom inventory.  
2. No difference was seen in pain relief between the patients treated with levetiracetam alone and those with concomitant main medication.  
3. Side effects due to levetiracetam included incoordination, dizziness, somnolence, constipation and confusion; however, these effects were not statistically different from those in the placebo group.

Valproate  
Drewes et al.1994  
Denmark  
RCT  
PEDro=5  
N=20  
**Population:** Mean age: 32.5 yr; Gender: males=15, females=5; Level of injury: paraplegia=16, tetraplegia=4; Type of pain: neuropathic.  
**Intervention:** Subjects were administered 600 mg of valproate or placebo 2x daily. Daily dose of valproate was increased (on an individual basis) if pain persisted and no side effects were reported. First treatment phase lasted 3 wk, followed by a 2 wk washout period, followed by 3 wk of crossover treatment.  
**Outcome Measures:** McGill Pain Questionnaire (MPQ).  
1. A trend toward improvement was noted among those in the valproate group; however, differences between the two groups were not significant.

Discussion

**Gabapentin**

Three studies found that gabapentin was no better than placebo in improving pain intensity post SCI (Rintala et al. 2007; Kaydok et al. 2014; Tai et al. 2002). While, Levendoglu et al. (2004) found gabapentin significantly reduced post SCI neuropathic pain compared to placebo. Three pre-post studies found gabapentin had a time effect in reducing pain post SCI (To et al. 2002; Ahn et al. 2003; Putzke et al. 2002).

**Pregabalin**

Pregabalin is an analogue of the neurotransmitter gamma-aminobutyric acid (GABA) with demonstrated analgesic, anxiolytic, and anticonvulsant activity. It’s mechanism of action is similar to gabapentin, but it has a higher affinity for the alpha-2-delta receptor and has linear pharmacokinetics. Siddall et al. (2006) published the results of a double blind randomized control trial evaluating the use of flexible dose pregabalin in the treatment of neuropathic pain in spinal cord injury. A total of 137 subjects with central neuropathic pain post spinal cord injury participated. The primary outcome was the VAS pain scale and secondary outcomes included sleep interference and anxiety scales. Seventy patients were randomized to receive pregabalin and 67 patients received placebo. At the end of the trial the pregabalin treated patients had significantly more pain relief. The pregabalin treated subjects also reported significantly
improved sleep and anxiety. Side effects were mild and transient and included dizziness, drowsiness and edema (similar to gabapentin).

Arienti et al. (2011) compared treatment of pain in three groups: 1) pregabalin only group; 2) pregabalin and osteopathy group; 3) osteopathy group. The study found significant improvement in pain perception and pain relief in the combined pregabalin and osteopathy group compared to the other two groups (p<0.01). Further, relief of pain was faster in the combined group compared to the pregabalin and osteopathy only groups.

In an RCT conducted by Vranken et al. (2008) patients in the treatment group received escalating doses of pregabalin (150-600 mg daily), while those in the control group received a placebo. Subjects in the treatment group reported a significant decrease in pain (p<0.01), along with improvements in the EQ-5D VAS and utility scores (p<0.01), as well as the Bodily Pain subscale of the SF-36 (p<0.05), relative to the control group.

Cardenas et al. (2013) studied 220 patients with neuropathic pain post SCI they were randomized to 150-600mg of pregabalin (108 patients) vs placebo (112) patients. The patients in the treatment group experienced significant improvements in all primary and key secondary outcomes including duration adjusted average change in pain, change in mean pain scores, percentage of patients with greater than 30% reduction in pain and reduction in pain related sleep interference scores compared to placebo. The improvements were seen as early as one week after initiation of treatment and lasted for the duration of the 17-week study. As with previous studies the medication was generally well tolerated, somnolence and dizziness were the most common side effects. This study provided class 1 evidence for the effectiveness of pregabalin 150mg to 600mg in the treatment of neuropathic pain post spinal cord injury.

**Lamotrigine**

Finnerup et al. (2002) studied the effects of lamotrigine on post SCI pain. Although the overall result showed no difference between placebo and lamotrigine, there was a significant reduction in pain in the incomplete spinal cord group.

**Levetiracetam**

Finnerup et al. (2009) conducted a randomized, double blind, crossover trial of levetiracetam in SCI individuals with pain. Participants were placed in either the levetiracetam or placebo group for five weeks and then crossed over after a one week washout period. This study found no significant difference between the levetiracetam and the placebo treatment group in improving pain intensity (p=0.46).

**Valproate**

In a double-blind crossover study (n=20), Drewes et al. (1994) examined the effects of a three-week treatment course of valproic acid on chronic central pain in individuals who had sustained a SCI. Overall, they found no significant differences between the control and treatment groups; however, there was a trend towards improvement in the treatment group.

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>N</th>
<th>Intervention</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rintala et al. 2007</td>
<td>RCT</td>
<td>22</td>
<td>Gabapentin</td>
<td>-</td>
</tr>
<tr>
<td>Levendoglu et al. 2004</td>
<td>RCT</td>
<td>20</td>
<td>Gabapentin</td>
<td>+</td>
</tr>
</tbody>
</table>
## Conclusion

There is level 1a evidence (from two randomized controlled trials, and one case series, pre-post, and observational study; Levendoglu et al. 2004; Tai et al. 2002; To et al. 2002; Ahn et al. 2003; Putzke et al. 2002) that the Gabapentin and pregabalin improve neuropathic pain post SCI.

There is level 1b evidence (from one randomized controlled trial; Arienti et al. 2011) that combined pregabalin and osteopathy treatment improves pain post SCI.

There is level 4 evidence (from one pre-post study; Ahn et al. 2003) that the anticonvulsant Gabapentin is more effective when SCI pain is <6 months than >6 months.

There is level 1b evidence (from one randomized controlled trial; Finnerup et al. 2002) that lamotrigine improves neuropathic pain in incomplete spinal cord injury.

There is level 1b evidence (from one randomized controlled trial; Finnerup et al. 2009) that Levetiracetam is not effective in reducing neuropathic pain post SCI.

There is level 2 evidence (from one randomized controlled trial; Drewes et al. 1994) that valproic acid does not significantly relieve neuropathic pain post SCI.

### Treatment Summary

<table>
<thead>
<tr>
<th>Study</th>
<th>Type</th>
<th>Patients</th>
<th>Treatment</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tai et al. 2002</td>
<td>RCT</td>
<td>7</td>
<td>Gabapentin</td>
<td>+</td>
</tr>
<tr>
<td>To et al. 2002</td>
<td>Non-RCT</td>
<td>44</td>
<td>Gabapentin</td>
<td>+</td>
</tr>
<tr>
<td>Ahn et al. 2003</td>
<td>Non-RCT</td>
<td>31</td>
<td>Gabapentin</td>
<td>+</td>
</tr>
<tr>
<td>Putzke et al. 2002</td>
<td>Non-RCT</td>
<td>21</td>
<td>Gabapentin</td>
<td>+</td>
</tr>
<tr>
<td>Cardenas et al. 2013</td>
<td>RCT</td>
<td>219</td>
<td>Pregabalin</td>
<td>+</td>
</tr>
<tr>
<td>Siddall et al. 2006</td>
<td>RCT</td>
<td>137</td>
<td>Pregabalin</td>
<td>+</td>
</tr>
<tr>
<td>Vranken et al. 2008</td>
<td>RCT</td>
<td>40</td>
<td>Pregabalin</td>
<td>+</td>
</tr>
<tr>
<td>Finnerup et al. 2002</td>
<td>RCT</td>
<td>30</td>
<td>Lamotrigine</td>
<td>+</td>
</tr>
<tr>
<td>Finnerup et al. 2009</td>
<td>RCT</td>
<td>36</td>
<td>Levetiracetam</td>
<td>-</td>
</tr>
<tr>
<td>Drewes et al. 1994</td>
<td>RCT</td>
<td>20</td>
<td>Valproate</td>
<td>-</td>
</tr>
</tbody>
</table>

10.3 Tricyclic Antidepressants in Post-SCI pain

Tricyclic antidepressant drugs are thought to modulate pain by inhibiting the uptake of norepinephrine and serotonin in the CNS. Sandford et al. (1992) have suggested that the tricyclic antidepressants exert an analgesic effect by making more serotonin available in the CNS, thereby potentiating the inhibitory action of the dorsal horn of the spinal cord.
Unfortunately, these medications are often sedating and produce a variety of anticholinergic side effects.

The partial effectiveness of tricyclic antidepressants (TCA) in some SCI patients with dysesthetic pain suggests that this drug is simply affecting the pain by treating the depression. Sandford et al. (1992) noted that pain and depression maybe chemically linked. Depression can lower pain thresholds or pain tolerances thereby increasing the patient's experience of pain. However, Max et al. (1987) were able to show that TCA had analgesic properties despite low doses or short treatment cycles with analgesic activity occurring independent of mood changes.

Davidoff et al. (1987b) reported trazodone's lack of effectiveness in relieving pain in 19 SCI patients with chronic dysesthetic pain, using a double-blind placebo controlled trial. Trazodone reportedly selectively inhibits serotonin and norepinephrine uptake in a ratio of 25:1, and is thought to produce greater analgesia and less anticholinergic side-effects compared to non-selective agents such as amitriptyline.

Table 23 Tricyclic Antidepressants in Post-SCI Pain

<table>
<thead>
<tr>
<th>Author Year; Country</th>
<th>Research Design Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rintala et al. 2007 USA RCT PEDro=10 N=38</td>
<td>Population: Mean age: 42.6 yr; Gender: males=20, females=2; Injury etiology: SCI=22, other=16; Level of injury: paraplegia=7, tetraplegia=12; Level of severity: AIS A-C=19, D=3; Mean time since injury: 12.6 yr; Mean duration of pain: 7.3 yr; Type of pain: neuropathic. <strong>Intervention:</strong> Patients were randomized into one of six groups: 1) gabapentin-amitriptyline-diphenhydramine (GAD; n=7); 2) GDA (n=6); 3) AGD (n=6); 4) ADG (n=6); 5) DGA (n=7); 6) DAG (n=6). Each drug was administered for 9 wk with one washout week before and after each drug treatment, for a total of 31 wk. The maximum doses were 50mg 3x/day for amitriptyline, 1200mg 3x/day for gabapentin, and 25mg 3x/day for diphenhydramine (control). <strong>Outcome Measures:</strong> Center of Epidemiologic Studies Depression Scale-Short Form (CESD-SF). 1. Amitriptyline was significantly more effective than diphenhydramine at 8 wk, in subjects with high (≥10) baseline CESD-SF scores (p=0.035). 2. No significant difference was seen at 8 wk in subjects with high (≥10) baseline CESD-SF scores in: • Effectiveness of amitriptyline over gabapentin (p=0.061). • Effectiveness of gabapentin over diphenhydramine (p=0.97). 3. Subjects with low (&lt;10) baseline CESD-SF scores showed no significant difference among the medications.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardenas et al. 2002 USA RCT PEDro=9 N=84</td>
<td>Population: Mean age: 41 yr; Gender: males=67, females=13; Level of injury: cervical, lumbar; Level of severity: AIS A-D; Mean time since injury: 169 mo; Type of pain: neuropathic, musculoskeletal. <strong>Intervention:</strong> Subjects with chronic pain randomized to a 6 wk course of amitriptyline or placebo 1-2 hr before bedtime. <strong>Outcome Measures:</strong> Average pain measure (scale 0-10), Short form McGill Pain Questionnaire (SF-MPQ), Brief Pain Inventory (BPI), Center of Epidemiologic 1. There were no significant differences between the two groups at baseline and at the 6 wk time period for any of the measures except satisfaction with life which showed higher scores for those in the placebo group (p=0.004). 2. For those who remained on the two medications, it was noted that those in the amitriptyline group had significantly higher severity ratings for increased spasticity (p=0.005) than those in the control group.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author Year; Country</td>
<td>Research Design</td>
<td>Score Total Sample Size</td>
<td>Methods</td>
<td>Outcome</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Duloxetine</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vranken et al. 2011</td>
<td>Netherlands RCT</td>
<td>PEDro=9 N=48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Population:** Mean age: 53 yr; Type of pain: neuropathic.  
**Intervention:** Participants were randomized to one of two groups: flexible dose placebo who received 1-2 capsules a day or flexible dose duloxetine who received 1 to capsules of 60 mg daily.  
**Outcome Measures:** Visual Analogue Scale (VAS), Short form health survey (SF-36). |          | 1. A two-point reduction on VAS in pain intensity was seen in the duloxetine group after 8 wk of treatment.  
2. A decrease in pain was seen in the duloxetine group compared to the control group (p=0.05).  
3. No significant between group differences were seen in SF-36. |
| **Effect Sizes:** Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- and post-intervention data. | Cardenas et al. 2002; Amtriptyline vs Placebo |          |          |
| **Venlafaxine**      |                 |                         |          |         |
| Richards et al. 2015 | USA RCT PEDro=9  | N=123                   |          |         |
| **Population:** Mean age: 40 yr; Gender: males=99, females=34; Mean time since injury: 10.9 yr. Type of pain: neuropathic, nociceptive, or mixed.  
**Intervention:** Participants were randomized to receive either venlafaxine or placebo. The treatment group received a starting dose of 37.5mg/day which was titrated up to a max of 225mg/day by wk 6 if tolerated. Doses could be increased by another 300 mg at wk 10 if needed to treat depression.  
**Outcome Measures:** Numeric Rating Scale (NRS). |          | 1. No significant improvement in pain related outcomes were seen among those with neuropathic or mixed pain.  
2. Individuals with nociceptive pain reported significant improvement in outcomes including: pain intensity (p=0.018) and pain interference subscales general activity (p=0.018), mood (p=0.048), mobility (p=0.005), normal work (p<0.001), relations with other people (p=0.021), sleep (p=0.014), and enjoyment of life (p=0.017). |
| **Effect Sizes:** Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- and post-intervention data. | Vranken et al. 2013; Duloxetine vs Placebo |          |          |
| Trazodone             |                 |                         |          |         |
Discussion

Tricyclic antidepressants are often recommended for the treatment of neuropathic pain following non-SCI causes. Therefore, it is important to study the use of tricyclic antidepressants in the treatment of post-SCI pain. Cardenas et al. (2002) reported no significant difference in randomized spinal cord injury patients receiving either amitriptyline or placebo given one to two hours before bedtime for a period of six weeks. Heilporn (1978) using combinations of melitracin and TENS reported relief of pain in eight of eleven SCI patients with dysesthetic pain. Vranken et al. (2011) found individuals receiving duloxetine reported clinically significant (>two units on VAS) improvement on pain compared to those in a placebo control group. In an interesting study by Rintala et al. (2007), amitriptyline was no better than gabapentin in depressed and non-depressed subjects but was better than diphenhydramine for depressed subjects only.

Davidoff et al. (1987b), in a six-week double-blind placebo-controlled trial, found that trazodone was ineffective at relieving pain in 18 SCI patients with chronic neuropathic pain.

Conclusion

There is level 1b evidence (from one randomized controlled trial; Rintala et al. 2007) that amitriptyline is effective in the treatment of post-SCI neuropathic pain in individuals only when there is concomitant depression.

There is level 1b evidence (from one randomized controlled trial; Vranken et al. 2011) that duloxetine may improve neuropathic pain post SCI.
There is level 1b evidence (from one randomized controlled trial; Davidoff et al. 1987b) that trazodone does not reduce post-SCI neuropathic pain.

Amitriptyline is effective in reducing neuropathic pain in depressed SCI individuals.

Duloxetine may improve neuropathic pain post SCI

Trazodone does not reduce post-SCI neuropathic pain.

10.4 Anaesthetic Medications

Anaesthetic medication such as lidocaine and ketamine are sodium channel blockers and can be delivered by a number of routes. Ketamine is a non-competitive NMDA receptor antagonist that can be administered epidurally, intrathecally, and orally to treat neuropathic pain syndromes (Hocking & Cousins 2003).

Table 24 Anaesthetic Medications for Post-SCI Pain

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finnerup et al. 2005</td>
<td>Denmark</td>
<td>RCT</td>
<td>PEDro=10</td>
<td>N=24</td>
<td>Population: Type of pain: neuropathic. Intervention: Subjects were initially divided into two groups: those with and without evoked pain. In this crossover design, each group then was subdivided (experimental versus controls) with experimental group receiving 5 mg of lidocaine infused over 30 min; controls received placebo. Outcome Measures: McGill Pain Questionnaire (MPQ).</td>
<td>1. In the total sample of patients, lidocaine reduced pain versus placebo (p&lt;0.01). 2. Assessing those with and without evoked pain, lidocaine still superior to placebo at reducing pain (p&lt;0.01 and p&lt;0.048, respectively). 3. More patients reported pain relief with at level and below-level pain while receiving lidocaine versus placebo.</td>
</tr>
<tr>
<td>Kvarnstrom et al. 2004</td>
<td>Sweden</td>
<td>RCT</td>
<td>PEDro=10</td>
<td>N=10</td>
<td>Population: Type of pain: Neuropathic Intervention: SCI patients were recruited for participation. Ketamine (0.4 mg/kg) versus lidocaine (2.5 mg/kg) versus saline placebo administered intravenously over 40 min. Outcome Measures: Visual Analogue Scale (VAS).</td>
<td>1. VAS scores were significantly reduced in ketamine versus the placebo group (p&lt;0.01). 2. Comparing lidocaine and placebo group, no significant difference noted (p=0.60). 3. Pain relief was not linked to altered temperature thresholds or other changes in sensory function.</td>
</tr>
<tr>
<td>Attal et al. 2000</td>
<td>France</td>
<td>RCT</td>
<td>PEDro=10</td>
<td>N=16</td>
<td>Population: Type of pain: neuropathic. Intervention: Patients participated, six with stroke and ten with SCI. Subjects given 5 mg of lidocaine or saline over a 30 min period. Treatments given in separate sessions, 3 wk apart. Order of sessions was randomized. Outcome Measures: Visual Analogue Scale (VAS); McGill Pain Questionnaire (MPQ).</td>
<td>1. Effects of lidocaine on pain were greater than effects of placebo, starting at end of injection, and lasting for up to 45 min post injection (p&lt;0.05). 2. More people received pain relief with lidocaine than with placebo; however, relief waned by 60 min post injection. 3. Lidocaine reduced pain in 11 patients; and, in 6 of 12 patients.</td>
</tr>
<tr>
<td>Author Year Country</td>
<td>Research Design</td>
<td>Score</td>
<td>Total Sample Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
<td>-------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loubser &amp; Donovan</td>
<td>USA RCT</td>
<td>PEDro=8</td>
<td>N=21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiou-Tan et al. 1996</td>
<td>USA RCT</td>
<td>PEDro=8</td>
<td>N_initial=15, N_final=11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Methods**

4. For those with brush-induced allodynia (n=8), lidocaine produced a reduction in intensity of allodynia 15 min post injection, and this lasted up to 30 min post injection.

**Effect Sizes:** Forest plot of standardized mean differences (SMD±95% C.I.) as calculated from pre- and post-intervention data.

---

**Population:** Age range: 18-58 yr; Gender: males=15, females=6; Level of injury: cervical, lumbar; Duration of chronic pain: >6 mo.

**Intervention:** Subjects had a lumbar subarachnoid catheter inserted. Subjects recorded their pain intensity at baseline. This was followed by two separate injections (placebo and 5% lidocaine in dextrose). A decrease in pain was considered a positive response to the treatment.

**Outcome Measures:** Pain.

1. All 21 patients tolerated the injection (anaesthetics and placebo) well.
2. Negative placebo response was noted in 17 pts. Following lidocaine (n=13) patients showed a mean reduction in pain (p<0.01) for an average of 123.1±95.3 min.
3. The decrease in pain reduction following lidocaine was significant (p<0.01) for the treatment group only.

**Effect Sizes:** Forest plot of standardized mean differences (SMD±95% C.I.) as calculated from pre- and post-intervention data.

---

**Population:** Mean age: 44 yr; Gender: males=11, females=2; Level of severity: AIS A-E; Mean time since injury: 7 yr.

**Intervention:** Following a 1 wk washout period subjects were given either 150 mg of mexiletine or placebo (150 mg 3x/day) followed by another 1 wk washout period then subjects placed in opposite group.

**Outcome Measures:** McGill Pain Questionnaire (MPQ), Visual Analogue Scale (VAS).

1. Visual analogue showed no significant differences for average pain levels over the past week and pain at time of test regardless of which medication (drug or placebo) subject was taking.
2. Results of the MPQ also showed no significant differences between the groups.
3. No change in level of function for either group at any time of the study.

**Effect Sizes:** Forest plot of standardized mean differences (SMD±95% C.I.) as calculated from pre- and post-intervention data.
Ketamine

Population: Mean age: 48.6 yr; Gender: males=33, females=7; Type of pain: neuropathic.  
Intervention: Participants were randomly assigned to treatment or control group. Participants in the treatment received 80 mg intravenous ketamine over a 5 hr period daily for 1 wk and 300 mg gabapentin 3x/day. The placebo group received placebo infusion and 300 mg of gabapentin 3x/day.  

Outcome Measures: Visual Analogue Scale (VAS).

1. Significant reduction in pain intensity was seen among individuals receiving ketamine infusion combined with gabapentin compared to those in the placebo group. The reduction remained significant up till 2-wk post infusion (p<0.05).

Effect Sizes: Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- and post-intervention data.

Amr 2010

Erythroid
RCT
PEDro=7
N=40

Kvarnstrom et al. 2004

Sweden
RCT
PEDro=10
N=10

Eide et al. 1995

Norway
RCT
PEDro=7
N=9

Population: Age range: 25-72 yr; Gender: males=8, females=1; Level of injury: cervical, thoracic; Level of severity: AIS A-D; Onset of pain: <6 mo since injury; Length of pain range: 14-94 mo; Type of pain: neuropathic.  
Intervention: Ketamine hydrochloride, alfentanil or a placebo was given as combination of bolus and continuous

1. VAS scores were significantly reduced in ketamine versus the placebo group (p<0.01).  
2. Comparing lidocaine and placebo group, no significant difference noted (p=0.60).  
3. Pain relief was not linked to altered temperature thresholds or other changes in sensory function.
intravenous infusions. The bolus dose was administered for 60 sec and the continuous intravenous infusion started simultaneously and was delivered by IVAC syringe pump. This lasted 17-21 min while the testing was performed. **Outcome Measures:** Visual Analogue Scale (VAS).

4. Significant differences were noted between the treatment groups (p=0.008). It was also noted that alldynia was not more changed by ketamine than by alfentanil (Wilcoxon p=0.93).

5. Alfentanil reduced wind-up-like pain (p=0.014) compared to the placebo group. The effect of ketamine on wind-up-like pain was not significantly reduced (p=0.07).

6. A high correlation between the serum concentration of ketamine and the reduction of continuous pain (r=.78, p<0.002) and the reduction of wind-up-like pain (r=0.83, p<0.002) was noted.

**Discussion**

**Lidocaine**

Given the severity of post-SCI pain, treatments such as lumbar epidural and subarachnoid infusions or anaesthetics are sometimes utilized and there is some evidence for these treatments. Loubser and Donovan (1991) conducted an RCT of 21 patients who were provided two separate lumbar subarachnoid injections of placebo and 5% lidocaine in dextrose. Following the lidocaine injection (n=13) there was a significant mean reduction in pain (p<0.01) for an average of two hours despite the fact that eight patients showed no changes. However, this treatment provided short-term relief of pain only. The authors regarded the value of this treatment as more a diagnostic procedure than a therapeutic one.

Attal et al. (2000) reported on 15 patients who received lidocaine intravenously and experienced a greater reduction in pain than those who received placebo, with an effect lasting up to 45 minutes post injection, and a reduction in the intensity of brush-induced allodynia and mechanical hyperalgesia. In an RCT study by Finnerup et al. (2005) those patients who received lidocaine intravenously (n=24) in two treatment sessions six days apart reported significantly less pain than those who did not receive intravenous lidocaine.

Kvarnstrom et al. (2004) found no evidence for the effectiveness of intravenous lidocaine in reducing neuropathic pain when compared to placebo.

**Mexiletine**

Chiou-Tan et al. (1996) provided 15 SCI individuals with either oral mexiletine (an orally administered derivative of lidocaine) or placebo (150 mg three times daily) in a double-blind
crossover RCT. There was no appreciable improvement in pain severity, as measured either on a VAS or using the McGill Pain Questionnaire, within either group.

**Ketamine**

In one RCT of 10 subjects, Kvarnstrom et al. (2004) found ketamine was successful in reducing spontaneous neuropathic pain post SCI. Eide et al. (1995) in an RCT of intravenous ketamine hydrochloride (NMDA receptor antagonist), alfentanil (µ-opioid receptor agonist) or placebo were provided as combination of bolus and continuous intravenous infusions. There was a significant benefit to ketamine or alfentanil versus placebo for alldynia. Alfentanil reduced wind-up pain compared to placebo but not ketamine overall; however, there was a high correlation between the serum concentration of ketamine and the reduction in continuous pain and wind-up pain. The effects of ketamine and alfentanil were significant when compared to placebo.

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>N</th>
<th>Intervention</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finnerup et al. 2005</td>
<td>RCT</td>
<td>24</td>
<td>Lidocaine</td>
<td>+</td>
</tr>
<tr>
<td>Attal et al. 2000</td>
<td>RCT</td>
<td>16</td>
<td>Lidocaine</td>
<td>+</td>
</tr>
<tr>
<td>Kvarnstrom et al. 2004</td>
<td>RCT</td>
<td>10</td>
<td>Lidocaine</td>
<td>-</td>
</tr>
<tr>
<td>Loubser &amp; Donovan 1991</td>
<td>RCT</td>
<td>21</td>
<td>Lidocaine</td>
<td>+</td>
</tr>
<tr>
<td>Chiou-Tan et al. 1996</td>
<td>RCT</td>
<td>15</td>
<td>Mexiletine</td>
<td>+</td>
</tr>
<tr>
<td>Kvarnstrom et al. 2004</td>
<td>RCT</td>
<td>10</td>
<td>Ketamine</td>
<td>+</td>
</tr>
<tr>
<td>Eide et al. 1995</td>
<td>RCT</td>
<td>9</td>
<td>Ketamine</td>
<td>+</td>
</tr>
</tbody>
</table>

**Conclusion**

*There is level 1b evidence (from one randomized controlled trial; Loubser & Donovan 1991) that Lidocaine delivered through a subarachnoid lumbar catheter provides short-term relief of pain greater than placebo.*

*There is level 1a evidence (from two randomized controlled trials; Kvarnstrom et al. 2004; Eide et al. 1995) that intravenous Ketamine significantly reduces alldynia when compared to placebo.*

*There is level 1b evidence (from one randomized controlled trial; Chiou-Tan et al. 1996) that mexiletine (a derivative of lidocaine) does not improve SCI dysesthetic pain when compared to placebo.*

Lidocaine through a subarachnoid lumbar catheter and intravenous Ketamine improve post-SCI neuropathic pain short term.

Mexiletine does not improve SCI dysesthetic pain.

### 10.5 Antispasticity Medications

Herman et al. (1992) note that baclofen, an α-aminobutyric acid (GABA)₃ receptor agonist, acts to suppress spasticity in SCI patients centrally within the spinal cord itself. GABA is known to be involved in several analgesics pathways (Sawynok 1987) and experimentally induced alldynia has been shown to be suppressed by baclofen (Henry 1982). However, baclofen, by treating spasticity, may reduce the musculoskeletal pain associated with spasticity. Continuous
Intrathecal infusion of baclofen can be effective, when oral baclofen is ineffective, in further reducing post-SCI spasticity and/or pain (dysesthetic, musculoskeletal, neurogenic; Boviatisis et al. 2005; Herman & D'Luzansky 1991; Penn & Kroin 1987; Plassat et al. 2004). For an in-depth discussion of intrathecal baclofen and its effects on spasticity in SCI, please refer to the Spasticity chapter.

Table 26 Antispastic Medications for Post-SCI Pain

<table>
<thead>
<tr>
<th>Author Year Country Research Design</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Baclofen</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boviatisis et al. 2005 Greece Case Series N&lt;sub&gt;Initial&lt;/sub&gt;=22, N&lt;sub&gt;Final&lt;/sub&gt;=21</td>
<td></td>
<td>Population: MS, SCI (N=7): Level of injury: C4 to T11. Results were presented by etiology. Intervention: Subjects were implanted with an intrathecal baclofen infusion pump delivering a continuous flow at a fixed rate of bolus intrathecal Baclofen. Outcome Measures: Barthel index scale, Ashworth scale (AS) and Penn spasm scale, Self-assessment pain scale.</td>
<td>1. The self-assessment pain scale revealed a limited improvement in pain (p=0.0941).</td>
</tr>
<tr>
<td>Plassat et al. 2004 France Case Series N&lt;sub&gt;Initial&lt;/sub&gt;=41, N&lt;sub&gt;Final&lt;/sub&gt;=37</td>
<td></td>
<td>Population: SCI (N=17), MS and cerebral spasticity - spasticity of spinal cord origin, N=33. Intervention: Intrathecal Baclofen pump implantation. Those suffering from neuropathic pain received co-administration of morphine or clonidine. Outcome Measures: Visual Analogue Scale (VAS), Satisfaction Score for locomotion, pain, sleep, and Ashworth Scale (AS).</td>
<td>1. Of the 25/40 patients suffering pain before ITB (Intrathecal Baclofen), 80% noted 25% improvement in pain and 40% noted 30-50% improvement. 20% reported no change.</td>
</tr>
<tr>
<td>Loubser &amp; Akman1996 USA Pre-Post N=16</td>
<td></td>
<td>Population: Age range: 21-63 yr; Gender: males=15, females=1; Level of severity: Frankel classification: A-C; Type of pain: neurogenic=6, musculoskeletal=6, neuropathic and musculoskeletal pain=3. Intervention: Intrathecal Baclofen pump implantation. Outcome Measures: Visual Analogue Scale (VAS).</td>
<td>1. The majority (75%) of patients reported chronic pain prior to the procedure. 2. No significant differences were noted on VAS at 6 mo and 12 mo following pump implantation. 3. For those with neurogenic pain symptoms, ANOVA revealed a non-significant effect of intrathecal baclofen on pain at both 6 and 12 mo. (F2, 16), adjusted p=0.26. 4. In 5 of 6 patients with musculoskeletal pain symptoms, pain severity decreased in conjunction with control of spasticity; musculoskeletal pain responded to the Baclofen infusion while neurogenic pain did not.</td>
</tr>
<tr>
<td><strong>Motor Point Phenol Block</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uchikawa et al. 2009 Japan Case Series N=7</td>
<td></td>
<td>Population: Mean age: 55.8 yr; Gender: males=6, females=1; Level of injury: cervical=7; Level of severity: AIS A=2, C=1, D=4. Intervention: A teflon coated needle and a weak electric stimulation was used to localize a motor point on the anterior</td>
<td>1. Significant improvement was observed in passive ROM of shoulder flexion, abduction and external rotation and shoulder pain - VAS (p&lt;0.05). 2. No significant improvement was seen in the modified Ashworth scale.</td>
</tr>
<tr>
<td>Author Year</td>
<td>Country</td>
<td>Research Design</td>
<td>Score</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Han et al. 2016</td>
<td>Korea</td>
<td>RCT PEDro=9 N=40</td>
<td></td>
</tr>
</tbody>
</table>

**Methods**

- Surface of the scapula. Phenol was injected into the point where the strongest muscle contraction was observed. Assessments were made before and 24 hr post injection.

**Outcome Measures**:
- Visual Analogue Scale (VAS), Ashworth Scale (AS), Flexion, Abduction, Rotation.

**Results**

1. Significant reduction in VAS score was seen at 4 wk (p=0.003) and 8 wk (p=0.005) post injection compared to the placebo group.
2. 30% or greater pain relief was experienced by 30% of patients at 4 and 8 wk in the treatment group; while, only 5% and 10% of the placebo group experienced greater than 30% relief at 4 and 8 wk in the placebo group.
3. No significant improvements on quality of life was seen.

**Effect Sizes**:

- Forest plot of standardized mean differences (SMD±95%C.I.) as calculated from pre- and post-intervention data.

---

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marciniak et al. 2008</td>
<td>USA</td>
<td>Case Series</td>
<td></td>
<td>N=28</td>
</tr>
</tbody>
</table>

**Methods**

- Botulinum toxin (BTX) type A injection for focal spasticity control.

**Outcome Measures**:
- Improvement in ambulation, Positioning, Upper-extremity function, Hygiene, Pain.

**Results**

1. Improvement was seen post-injection in ambulation (56%), positioning (71%), upper-extremity function (78%), hygiene (66.6%), and pain (83.3%).
2. The effectiveness of BTX injections was not influenced by early use of BTX injections (less than a year after onset of symptoms) versus late use.
3. Improvement in those with upper arm compared to lower arm injections was similar.
4. SCI completeness did not affect improvement.

**Discussion**
**Baclofen**

Boviatsis et al. (2005) and Plassat et al (2004) presented case series data that reflected improvements in self-reported pain ratings after intrathecal baclofen administration. Herman et al. (1992) in an RCT found that intrathecal baclofen significantly suppressed the dysesthetic (burning) pain among six of the seven subjects (p<0.001). Only one of the placebo patients noted the dysesthetic pain was abolished. Intrathecal baclofen did not have a significant impact on pinch induced pain. Therefore, in this study, intrathecal baclofen appeared to have an impact on post-SCI dysesthetic pain in addition to treating the spasticity. Loubser and Akman (1996) performed a before and after study of implanted Baclofen infusion pumps provided for spasticity. Twelve of sixteen patients described pre-existing chronic pain but there was no significant difference in the VAS neurogenic pain symptoms at six and 12 months (p=0.26) while musculoskeletal pain symptoms and pain severity decreased in conjunction with control of spasticity in five of six patients. In this study, it appeared musculoskeletal pain was reduced more with intrathecal baclofen, presumably by reducing spasticity.

Hence, it would appear that intrathecal baclofen improves chronic post-SCI pain but the actual mechanism has not been adequately established. There is evidence that baclofen infusion pumps may be helpful for both neuropathic and musculoskeletal pain after SCI (Loubser & Akman 1996). However, studies have shown that intrathecal baclofen only reduces SCI pain when pain is related to muscle spasms (Coffey et al. 1993; Meythaler et al. 1992). Suppression of central pain through baclofen antagonism of substance P has been postulated (Herman et al. 1992).

**Motor Point Phenol Block**

In a case series, Uchikawa et al. (2009) followed seven spinal cord injury individuals with spastic shoulder pain underwent a motor point phenol block procedure. A significant improvement in VAS shoulder pain was seen post injection (p<0.05).

**Botulinum Toxin**

In a double-blind placebo study, Han et al. (2016) found BTX-A significantly improved post SCI neuropathic pain based on average pain ratings on the VAS at four and eight weeks. The study found no significant improvements in quality of life. Marciniak et al. (2008) treated 29 SCI patients with Botulinum toxin type A injections to treat focal spasticity. Pain was improved by 83.3%.

**Conclusion**

*There is conflicting level 4 evidence (from two case series studies and one pre-post study; Boviatsis et al. 2005; Plassat et al. 2004; Loubser & Akman 1996) that intrathecal baclofen reduces dysesthetic pain post-SCI.*

*There is level 4 evidence (from one pre-post study; Loubser & Akman 1996) that intrathecal baclofen reduces musculoskeletal pain post-SCI in conjunction with spasticity reduction.*

*There is level 4 evidence (from one case series study; Uchikawa et al. 2009) that motor point phenol block is effective in reducing short term spastic shoulder pain post SCI.*
There is level 1 evidence (from one RCT; Han et al. 2016) that local botulinum toxin injections may reduce neuropathic pain post SCI.

- Intrathecal Baclofen improves musculoskeletal pain post SCI and may help dysesthetic pain related to spasticity.
- Motor point phenol block reduces spastic shoulder pain.
- Botulinum toxin injections reduce neuropathic pain.

10.6 Opioids for Post-SCI Pain

To date there are few research studies examining opioids in the treatment of SCI pain. There is a substantial body of research investigating the benefits of opioid analgesics in the treatment of non-cancer chronic pain and some of those studies examined the impact of opioids on neuropathic pain. There are no studies employing opioid analgesics in post-SCI pain. Furla et al. (2006) conducted a meta-analysis of effectiveness and side-effects of opioid analgesics for chronic non-cancer pain. Their meta-analysis found that opioids reduced pain and improved functional outcomes when compared to placebo for both nociceptive and neuropathic pain syndromes. Strong opioids (oxydone and morphine) were significantly superior to naproxen and nortriptyline for pain relief but not functional outcomes. Weak opioids (propylene, tramadol and codeine) did not significantly do better than NSAIDS or tricyclic anti-depressants for either pain relief or functional outcomes (Furla et al. 2006). The authors found that clinically, only constipation and nausea were significantly more common with opioids. The big concern with opioids is of course addiction or opioid abuse. Unfortunately, as Furla et al. (2006) notes in their meta-analysis, the existing randomized trials were not designed to evaluate addiction.

Table 27 Opioids for Post-SCI Pain

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score PEDro</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norrbrink &amp; Lundberg 2009</td>
<td>Sweden</td>
<td>RCT</td>
<td>PEDro=8</td>
<td>N=35</td>
<td>Population: Mean age: 51.3 yr; Gender: males=28, females=7; Level of injury: tetraplegia=16, paraplegia=19; Type of pain: neuropathic. Intervention Patients were randomized in a 2:1 ratio (tramadol/placebo) and treatment was administered for 4 wk. Both patients and staff were blind to the treatments. Each patient was given 50 mg tramadol or placebo 3x/day. The daily dose was increased by one tab for 5 5 days to a maximum dose of 8 tab. Outcome Measures: Patient Global Impression of Change, Multidimensional Pain Inventory.</td>
<td>1. Significant differences were seen in between group pain ratings (p&lt;0.05). 2. Patient Global Impression of Change rating was significantly higher in the tramadol group than the control group. 3. Significant improvements were seen in ratings of anxiety, global life satisfaction and sleep quality (p&lt;0.05). 4. No significant changes were seen in pain pleasantness, depression, or on the MPI scales pain interference, perceived life control, affective distress or social support.</td>
</tr>
<tr>
<td>Attal et al. 2002</td>
<td>France</td>
<td>RCT</td>
<td>PEDro=10</td>
<td>N=15</td>
<td>Population: SCI Mean age: 54.9 yr; Gender: males=6, females=9; Mean duration of pain: 5 yr. Intervention: Initially, patients received intravenous morphine titrated up to the maximal tolerated dosage using</td>
<td>1. Spontaneous pain scores decreased immediately after the end of the infusion of morphine and placebo for up to 120 min in both groups.</td>
</tr>
<tr>
<td>Author Year Country</td>
<td>Research Design Score</td>
<td>Total Sample Size</td>
<td>Methods</td>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Eide et al. 1995 Norway | RCT | PEDro=7 | N=9 | successive bolus injections of 2 mg morphine every 10 min. Double blind phase began 3 wk after titration phase. 
**Outcome Measures:** Spontaneous pain, Tactile allodynia, Psychophysical measurements, Mechanical detection and pain thresholds, Thermal detection and pain. |
| | | | | 2. The effects of the morphine did not differ significantly from those who were given the placebo post injection. |
| | | | | 3. Those who reported pain relief from the treatment was higher (3x) after the morphine than after the placebo was given from 15-60 min post injection. |
| | | | | 4. Burning pain was weakened by the morphine in seven patients and by placebo in four patients. |
| | | | | 5. When looking at the effects of morphine on mechanical allodynia it could be seen that the morphine produced a reduction in intensity. The saline treatment did not have an effect. |
| | | | | 6. Morphine only significantly reduced dynamic mechanical allodynia (p<0.01). |
| Barrera-Chacón et al. 2010 Spain Pre-Post | N=57 | | | Population: Mean age: 46.4 yr, Level of severity: AIS A=27, B=1, C=10. 
**Intervention:** Participants were provided with oxycodone treatment for neuropathic pain. 
**Outcome Measures:** Visual Analogue Scale (VAS). |
| | | | | 1. Freedom's two-way analysis by ranks showed differences between the various treatments (p=0.005). |
| | | | | 2. The effect of alfentanil and ketamine was also significant (p<0.01 and p<0.04 respectively). |
| | | | | 3. No significant differences were noted between the actions of ketamine and alfentanil (Wilcoxon p=0.19). |
| | | | | 4. Significant differences were noted between the treatment groups (p=0.008). It was also noted that allodynia was not more changed by ketamine than by alfentanil (Wilcoxon p=0.93). |
| | | | | 5. Alfentanil reduced wind-up-like pain (p=0.014) compared to the placebo group. The effect of ketamine on wind-up-like pain was not significantly reduced (p=0.07). |
| | | | | 5. A high correlation between the serum concentration of ketamine and the reduction of continuous pain (r=0.78, p<0.002) and the reduction of wind-up-like pain (r=0.83, p<0.002) was noted. |
Discussion

Attal et al. (2002) found the intravenous morphine titrated to maximal tolerated dosage, significantly reduced dynamic mechanical allodynia but not necessarily spontaneous or burning pains. Oral opioids remain untested in this population.

Norrbrink and Lundeberg (2009) conducted a double-blind RCT to assess the efficacy of tramadol in 35 SCI individuals diagnosed with at- or below- level neuropathic pain. The authors reported significant differences between the two group pain ratings (p<0.05). Tramadol was also found to be effective in improving anxiety, global life satisfaction and sleep quality in individuals with post SCI pain (p<0.05). However, no significant improvement was seen in pain unpleasantness and depression levels.

Eide et al. (1995) randomly assigned individuals with chronic SCI pain into three groups receiving ketamine hydrochloride, alfentanil (μ-opioid receptor agonist) or placebo treatment. The study found alfentanil and ketamine effectively reduced SCI pain compared to placebo treatment (p<0.04, p<0.01); however, no difference was seen between the two treatments in overall pain. Alfentanil significantly reduced wind up like pain while ketamine did not.

In a pre-post study, Barrera-Chacón et al. (2010) found oxycodone significantly decreased pain intensity and improved sleep (p<0.001) among individuals experiencing neuropathic pain post SCI. These effects were seen mostly in combination with anticonvulsant treatment.

Conclusion

There is level 1b evidence (from one randomized controlled trial; Attal et al. 2002) that intravenous morphine significantly reduces mechanical allodynia more than placebo.

There is level 1b evidence (from one randomized controlled trial; Norrbrink & Lundeberg 2009) that tramadol is effective in reducing neuropathic pain post SCI.

There is level 1b evidence (from one randomized controlled trial; Eide et al. 1995) that alfentanil reduces overall post SCI pain.

There is level 1b evidence (from one randomized controlled trial; Eide et al. 1995) that alfentanil is more effective at reducing wind up like pain than ketamine.

There is level 4 evidence (from one pre-post study; Barrera-Chacon et al. 2010) that oxycodone and anticonvulsants may be effective in improving SCI neuropathic pain.
Intravenous morphine reduces mechanical allodynia.

Tramadol reduces neuropathic pain.

Alfentanil reduces chronic pain post SCI.

Alfentanil is more effective in reducing wind up like pain post SCI than ketamine.

Oxycodone and anticonvulsants may improve neuropathic SCI pain.

10.7 Cannabinoids in Post-SCI Pain

Wade et al. (2003) note that delta-9-tetra hydrocannabinol (THC) and other cannabinoids have been shown to improve both tremor and spasticity in animal models of multiple sclerosis supported by anecdotal reports that cannabis relieves some of the troublesome symptoms of multiple sclerosis and spinal cord injury (Baker et al. 2000; Consroe et al. 1997; Dunn & Davis 1974; Martyn et al. 1995; Meinck et al. 1989; Petro & Ellenberger 1981; Ungerleider et al.1987). There is a clinical impression that marijuana smoking is very common among patients post-SCI; however, there are social and legal implication to its use and medical concerns about smoking as a delivery system.

Table 28 Cannabinoids and Post-SCI Pain

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rintala et al. 2010</td>
<td>USA</td>
<td>RCT</td>
<td>PEDro=5 N=7</td>
<td>Population: Mean age: 50.1 yr; Level of injury: paraplegia=4, tetraplegia=3; Level of severity: AIS A=4, B=1, D=2; Mean time since injury: 21.9 yr; Type of pain: neuropathic. Intervention: Participants were randomized into two groups: 1) 5 mg dronabinol titrated every third day (max 20 mg/day); 2) 25 mg diphenhydramine day one then titrated up to 75 mg/day. Participants remained in a 7 day stabilization phase once titration was complete and then a 28 day maintenance phase. Next participants completed a 9 day weaning-off phase followed by a seven day washout period. Each participant then crossed over to the other group. Outcome Measures: Brief Pain Inventory (BPI).</td>
<td>1. Pain intensity was not significantly different between the dronabinol and diphenhydramine groups. 2. No significant difference was seen in side effects between the groups. 3. Most common side effects included dry mouth, constipation, fatigue and drowsiness.</td>
</tr>
</tbody>
</table>
Discussion

Rintala et al. (2010) examined the effect of dronabinol versus an active control (diphenhydramine) on pain post SCI. The study found no significant difference on pain intensity between the two treatments.

Hagenbach et al. (2007) conducted a study examining primarily the effectiveness of THC in improving spasticity and secondarily, in improving pain with SCI individuals. In the first phase of the study, 22 individuals received 10 mg of oral THC which was then dose titrated until maximum tolerance or treatment dose was reached for six weeks. The study found a significant reduction in the pain of SCI individuals post treatment (p=0.047). The third phase of the study involved a double blind randomized control trial which included 13 of the previously mentioned individuals receiving either individual maximum treatment dosage previously determined or a placebo dose. In this phase, Hagenbach et al. (2007) found individuals in the treatment group had no significant pain reduction compared to those in the placebo group.

Given that marijuana has anecdotally been thought to have benefits for post-SCI pain, Wade et al. (2003) conducted an RCT of sublingual 2.5 mg THC and/or cannabidiol and found that it helped to reduce pain, muscle spasm, spasticity and sleep in a group of largely multiple sclerosis patients with neuropathic pain. It is of note that only a small percentage of the patients in this study had spinal cord injuries hence did not meet inclusion criteria. Cannabinoids are a promising treatment, which would benefit from other studies.

Conclusion

There is conflicting level 2 evidence (from one randomized controlled trial; Hagenbach et al. 2007) for the use of delta-9-tetra hydrocannabinol in reducing spastic pain in SCI individuals.
There is level 2 evidence ((from one randomized controlled trial; Rintala et al. 2010) that dronabinol is not effective in reducing pain intensity post SCI.

Cannabinoids are a potential new treatment for post-SCI pain in need of further study.

Dronabinol is not effective in reducing pain post SCI.

10.8 Clonidine for Post-SCI Pain

Clonidine is an alpha-2 adrenoceptor agonist which has been shown to activate spinal receptors that reduce responses to painful stimuli (Yaksh 1985). Ackerman et al. (2003) note that clonidine inhibits nociceptive impulses by activating alpha-2 adrenoceptors in the dorsal horn of the spinal cord (Rainov et al. 2001). The anti-nociceptive effects of clonidine are thought to be mediated via inhibitory interaction with pre- and post-synaptic primary afferent nociceptive projections in the dorsal horn (Osenbach & Harvey 2001) and possibly by inhibition of substance P release (Ackerman et al. 2003; Hassensbusch et al. 1999). Ackerman et al. (2003) noted selective alpha-2 adrenergic antagonists (e.g. Yohimbine) have been shown to reverse clonidine-induced analgesia (Osenbach & Harvey 2001). Teasell and Arnold (2004) were able to show that venous alpha-adrenoceptor hyper-responsiveness was present in patients with RSD, in diabetic peripheral neuropathy (Arnold et al. 1993) and below the level of lesion in quadriplegics (Arnold et al. 1995). They speculated that this alpha-adrenoceptor hyper-responsiveness was in fact due to alpha-2 adrenoceptor dysfunction leading to overstimulation of the post-synaptic alpha-1 adrenoceptor peripherally. This would fit with the observation that clonidine reduces pain post-SCI below the level of the lesion, presumably through its alpha-2 adrenoceptor agonist function.

Ackerman et al. (2003) noted that clonidine may be useful for patients who are non-responsive to opioids. Clonidine appears to work synergistically with opioids to provide pain relief (Osenbach & Harvey 2001; Plummer et al. 1992; Siddall et al. 2000; Tallarida et al. 1999).

Table 29 Clonidine for Treatment of SCI Pain

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siddall et al. 2000</td>
<td>Australia</td>
<td>RCT</td>
<td>PEDro=8</td>
<td>N=15</td>
<td>Population: Age range: 26-78 yr; Type of pain: below level neuropathic=4, at level neuropathic=4, both=3. <strong>Intervention:</strong> Placebo, morphine or Clonidine was delivered via catheter into lumbar intrathecal space. The subjects were first given either: 2, 1 mg morphine, 50-100 mcg of Clonidine or placebo. Dosage was increased if the subject had no side effects and no pain relief. Subjects could receive up to 1.5 times the initial drug dosage if necessary. Once the subject received satisfactory pain relief or side effects from the drug they were on</td>
<td>1. The administration of morphine or clonidine resulted in a mean reduction in pain levels but this was not statistically significant compared to the effect of placebo. 2. When the mixture of morphine and clonidine was administered there was a significant reduction in pain when compared to those on placebo (p=0.0084).</td>
</tr>
<tr>
<td>Author Year Country Research Design Score Total Sample Size</td>
<td>Methods</td>
<td>Outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------------------------------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>they were given a mixture of morphine and Clonidine. <strong>Outcome Measures</strong>: Numerical pain rating scale, Numerical pain relief score, Verbal pain rating, Nausea scale, Sedation scores.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Population</strong>: Age range: 34-77 yr; Gender: males=4, females=6; Time since injury range: 1-10 yr. <strong>Intervention</strong>: Subjects, once implanted with a medical pump, were originally given 3 mL of saline followed by 1 mL of morphine, this was followed by a second dose of morphine (0.02 mg) provided no side effects or benefits were noted. This was followed by Clonidine (30 ug in 1 mL) and then depending on side effects a final dose of Clonidine (50 ug in 1 mL). After each drug administration, the catheter was flushed with saline. <strong>Outcomes Measures</strong>: Not specified.</td>
<td>1. Subjects reported a good to excellent pain reduction following the administration of Clonidine administration. 2. After Clonidine bolus subjects experienced an optimum pain reduction. Average dose of Clonidine was initially 53 ug/day and this decreased (or stabilized) to 44 ug/day.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Discussion**

Siddall et al. (2000) in a crossover RCT of 20 subjects with post-SCI neuropathic pain received intrathecal morphine, clonidine or placebo at the lumbar level. Once the subjects received satisfactory pain relief or drug side effects they were given a mixture of clonidine and morphine. Morphine or clonidine showed a trend in pain reduction, which was not statistically significant but when the combination of morphine and clonidine was administered there, was a significant reduction in pain. Siddall et al. (2000) did postulate that by administering half the effective minimum dose of clonidine and morphine together resulted in a synergistic addictive effect above the simple summing up of each drug in isolation. In a study by Uhle et al. (2000) 10 patients were given morphine followed by clonidine via a medical pump. Patients given clonidine experienced a good to excellent reduction in their pain.

**Conclusion**

*There is level 1b evidence (from one randomized controlled trial; Siddall et al. 2000) that intrathecal clonidine alone does not provide pain relief greater than placebo.*

*There is level 2 evidence (from one prospective controlled trial; Uhle et al. 2000) that the combination of intrathecal morphine and clonidine provides pain relief greater than placebo.*

Intrathecal Clonidine alone does not appear to provide pain relief although it may be helpful in combination with Intrathecal Morphine.
10.9 Topical Capsaicin

Capsaicin is an active alkaloid in hot peppers. It has been successfully used to reduce pain in herpes zoster, diabetic neuropathy and post-mastectomy pain syndrome (Sandford & Benes 2000). It works as an inhibitor of substance P.

Table 30 Topical Capsaicin in Post-SCI Pain

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandford &amp; Benes 2000 USA</td>
<td>Case Series N=8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population: SCI: Age range: 18-66 yr; Gender: males=6, females=2; Level of injury: C6-L5; Level of severity: complete=4, incomplete=4; Injury etiology: motor vehicle accident=3, gunshot wound=3, fall=1, aneurysm repair=1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention: Patients who underwent topical capsaicin therapy to reduce pain were retrospectively reviewed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcome Measures: Reduction in pain.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Patients showed improvement in pain in 1-2 wk of topical capsaicin therapy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Two patients showed long-term efficacy for over 2 yr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Topical capsaicin was used to treat radicular post-SCI pain for one to two weeks (Sandford & Benes 2000). Patients showed improvement in pain and two of the eight patients were still improved for over two years.

Conclusion

*There is level 4 evidence (from one case series study; Sandford & Benes 2000) that topical capsaicin reduces post-SCI radicular pain.*

Topical capsaicin reduces post-SCI radicular pain.

10.10 Lithium Carbonate

Lithium carbonate may have the potential to be a neuroregenerative agent for spinal cord injury (Yang et al. 2012).

Table 31 Lithium Carbonate for Post-SCI Pain

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang et al. 2012 China RCT PEDro=8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population: Mean age: 40 yr; Gender: males=35, females=1; Level of severity: incomplete=7, complete=29; Time since injury: &gt;1yr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention: Participants were randomized to receive oral lithium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. VAS-PI scores were significantly lower in the treatment group than in controls at 6 wk (p=0.014), which lasted up to 4.5 mo post treatment (p=0.041).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
carbonate (0.6-1.2mmol/L, treatment, n=18) or placebo (control, n=18) for 6 wk. Outcomes were assessed pre-and post treatment and at 6mo follow-up. **Outcome Measures**: Visual Analogue Scale - Pain Intensity (VAS-PI), Modified Ashworth Scale (MAS), Sensory scores (touch and pinprick).

**Discussion**
In a double-blind placebo controlled randomized trial, Yang et al. (2012) found that individuals that received lithium carbonate had markedly reduced VAS scores over a six week period and at six-month follow-up compared to the placebo group.

**Conclusion**

*There is level 1b evidence (from one RCT; Yang et al. 2012) that lithium carbonate may reduce neuropathic pain post SCI*

<table>
<thead>
<tr>
<th>Author Year Country Research Design Score Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giner-Pascual et al. 2011 Spain Prospective Controlled Trial N=45</td>
<td><strong>Population</strong>: SCI: all subjects with tendinopathy of the shoulder. <strong>Intervention</strong>: Patients were divided into a treatment and placebo group. The treatment group received a quarter of a 1.25 mg NT patch over the shoulder and were followed for 6 mo. The placebo group received a placebo patch. <strong>Outcome Measures</strong>: Spinal Cord Independence Measure (SCIM), Wheelchair Users Shoulder Pain Index (WUSPI), Visual Analogue Scale (VAS).</td>
<td>1. Significant improvement was seen in the primary outcome measures including SCIM, WUSPI, and VAS at 6 mo follow-up. 2. Those in the treatment group reported a number of side effects including headaches, facial reddening, dizziness, and tachycardia.</td>
</tr>
</tbody>
</table>
**Discussion**

One prospective controlled trial found transdermal NT patch was effective in improving pain intensity and functional movements among people with shoulder tendinopathy post SCI. Safety of the treatment is yet to be assessed.

**Conclusion**

*There is level 2 evidence (from one prospective controlled trial; Giner-Pascual et al. 2011) that Transdermal Nitroglycerine reduces post-SCI shoulder tendinopathy pain.*

Transdermal Nitroglycerine may reduce post-SCI shoulder tendinopathy pain.

---

**11.0 Surgical Interventions**

**11.1 Spinal Cord Stimulation**

Spinal cord stimulation has been used to try to treat intractable pain. The procedure is both expensive and invasive.
Table 33 Spinal Cord Stimulation Post SCI

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meier et al. 2015</td>
<td>Denmark</td>
<td>PEDro=8</td>
<td>RCT</td>
<td>14</td>
<td>Population: Median age: 53 yr; Gender: males=5, females=9; Mean time since injury: 79 mo; Type of pain: complex regional pain syndrome=5, peripheral neuropathic=9. Intervention: Individuals were examined during activated and deactivated spinal cord stimulation (SCS), provided in a randomized sequence, via quantitative sensory testing (QST). Outcome Measures: Pain thresholds (mechanical, thermal, and wind-up-like); Pain intensity; Pain areas.</td>
<td>1. For mechanical (tactile, pressure, and vibration) thresholds, there was no significant difference between conditions for detection and pain. Both tactile and pressure thresholds were lower on the affected side than the control side, while vibration threshold was the same on both sides. 2. For thermal (hot and cold) thresholds, there was no significant difference between conditions for detection. However, the heat pain threshold was slightly but significantly different between sides during SES activation (p=0.01). 3. For wind-up-like pain, there was no significant difference between conditions for detection and tolerance. 4. Areas of brush allodynia were significantly smaller (p=0.037) during the activated condition (225cm²) than the deactivated condition (310cm²). 5. There were no significant differences between conditions for areas of spontaneous pain or pinprick hyperalgesia. 6. There was no significant difference between conditions for present or recent pain intensity. 7. Overall, 93% of patients were able to identify SES activation.</td>
</tr>
<tr>
<td>Cioni et al. 1995</td>
<td>Italy</td>
<td>Case Series</td>
<td>N=25</td>
<td></td>
<td>Population: Age range: 33-76 yr; Gender: males=19, females=6; Time since injury range: 1-39 yr; Type of pain: neuropathic, musculoskeletal. Intervention: An epidural electrode was inserted percutaneously over the posterior columns of the spinal cord. Spinal cord stimulation was performed with the following parameters: 85 cycles/sec, duration of 210 sec and varied intensity for comfortable parasthesias 30 min every 3 hr during the day. Mean follow-up was 37.3 mo. Outcome Measures: Pain relief.</td>
<td>1. During stimulation, 22 patients reported parasthesias overlapping the painful area. 2. 9 patients enjoyed 50% pain relief at the end of the test period. No pain relief was found in 3 of the patients. No statistical results reported.</td>
</tr>
</tbody>
</table>

Discussion

Cioni et al. (1995) reported inserting epidural electrodes over the posterior columns of the spinal cord to allow for spinal cord stimulation. During spinal cord stimulation, 22 patients reported paraesthesia overlapping the painful area. Nine patients reported 50% pain relief and three patients experienced no pain relief.
Conclusion

There is level 4 evidence (from one case series study; Ciono et al. 1995) that spinal cord stimulation improves post-SCI pain.

Spinal cord stimulation may improve post-SCI neuropathic and musculoskeletal pain.

11.2 Dorsal Longitudinal T-Myelotomy for Pain Management Post-SCI

Table 34 Dorsal Longitudinal T-Myelotomy Post-SCI Pain

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design Score Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| Livshits et al. 2002 | Germany/Israel | Case Control                           | Population: Type of pain: spastic. Intervention: Individuals with SCI underwent one of two different surgical procedures: longitudinal T-myelotomy using the Bischof II technique (n=20), or longitudinal myelotomy en croix (Pourpre procedure) (n=20). Outcome Measures: Short form McGill Pain Questionnaire (SF-MPQ), Visual Analog Scale (VAS). | All individuals (regardless of surgical procedure) reported some pain relief.  
2. The Pourpre procedure appeared better than the Bischof II procedure at relieving pain, as measured by VAS and SF-MPQ (in the immediate and long term).  
3. By yr 5 and yr 10, individuals in both groups reported a return of motor spasticity. |

Discussion

Livshits et al. (2002) conducted a case control study comparing two approaches of dorsal longitudinal T-myelotomy (i.e., Pourpre versus Bischof II) with respect to their effectiveness in reducing pain and spasticity in people with SCI, initially refractory to more conservative approaches (N=40). Systematic follow-up assessments at six months, five and ten years were conducted. In this study, significant pain reduction was obtained with either of these surgical techniques, as measured using scores obtained from the Short Form – McGill Pain Questionnaire, the Present Pain Intensity scale, and a visual analog scale, but this appeared to be more notable with the Pourpre versus the Bischof II procedure.

Conclusion

There is level 3 evidence (from one case control study; Livshits et al. 2002) to support the use of dorsal longitudinal T-myelotomy procedures, in particular Pourpre’s technique, to reduce spastic pain post SCI.

Dorsal longitudinal T-myelotomy procedures reduce pain post SCI.
11.3 Dorsal Rhizotomy

Dorsal rhizotomy is a procedure where the sensory roots are divided either intradurally or extradurally. According to Nashold (1991) a single one or two level root rhizotomy may be appropriate when the pain is localized as in those patients with paraparesis and single root pain. Moreover, Nashold (1991) reported the Dorsal Root Entry Zone (DREZ) procedure was more likely to be successful in these patients.

Table 35 Dorsal Root Entry Zone Procedure Post-SCI Pain

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Research Design</th>
<th>Score</th>
<th>Total Sample Size</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chun et al. 2011</td>
<td>Korea</td>
<td>Pre-Post</td>
<td>N=38</td>
<td>Population: Mean age: 49 yr. Level of injury: T=5, conus medullaris=33; Level of severity: AIS A=27, AIS B=11.</td>
<td>Intervention: MDT was performed according to Sindou's technique.</td>
<td>1. Overall patients achieved good (79.0%), fair (10.5%) and poor (10.5%) poor pain relief. 2. Good pain relief was achieved in 82.5% of those with mechanical pain and 100% with combined pain, versus 20% with thermal pain 3. Good pain relief was achieved in those with diffuse pain (73.3%) and segmental pain (82.6%). 4. Good pain relief was achieved in those with intermittent pain (78.2%) and continuous pain (80.0%).</td>
</tr>
<tr>
<td>Falci et al. 2002</td>
<td>USA</td>
<td>Prospective Controlled Trial</td>
<td>N=41</td>
<td>Population: Type of pain: neuropathic.</td>
<td>Intervention: The first nine patients were placed in group 1 and the next 32 in group 2. Individuals in group 1 underwent Dorsal Root Entry Zone (DREZ) microcoagulation using recorded spontaneous neuroelectrical hyperactivity in DREZ as a guide. While the second group underwent DREZ microcoagulation using the above recorded spontaneous nuroelectrical hyperactivity in the DREZ as well as recorded evoked hyperactivity during TCS of the DREZ.</td>
<td>1. Seven patients in the first group achieved at least 50% pain relief post treatment while five patients achieved 100%. 2. In the second group, 84% of patients reported 100% pain relief post treatment; while 88% reported at least 50%. 3. In patients in the second group that experienced below level pain, 81% of patients reported 100% pain relief; while 19% that experienced above level pain all achieved 100% pain relief. 4. The intervention did not result in any deaths. 5. 82% of patients lost partial or complete pinprick sensation in the corresponding DREZ. 6. 68% experienced partial or complete loss of light touch sensation.</td>
</tr>
<tr>
<td>Spaic et al. 2002</td>
<td>Yugoslavia (Serbia)</td>
<td>Case Series</td>
<td>N=26</td>
<td>Population: Type of pain: neuropathic.</td>
<td>Intervention: Dorsal Root Entry Zone (DREZ) surgical treatment.</td>
<td>1. DREZ surgical treatment was found to be effective at reducing pain in most patients, more so for those with mechanical and combined versus thermal pain. 2. Long-term pain relief was achieved in 90% of those with mechanical pain and 25% of those with combined pain.</td>
</tr>
<tr>
<td>Sindou et al. 2001</td>
<td>France/Egypt</td>
<td>Case Series</td>
<td>N=26</td>
<td>Population: Type of pain: neuropathic, musculoskeletal.</td>
<td></td>
<td>1. By 10 days, 70% of patients had experienced good pain relief, 18.5%</td>
</tr>
<tr>
<td>Author Year</td>
<td>Country</td>
<td>Research Design</td>
<td>Score</td>
<td>Total Sample Size</td>
<td>Methods</td>
<td>Outcome</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-----------------</td>
<td>-------</td>
<td>------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Spaic et al. 1999</td>
<td>Yugoslavia (Serbia)</td>
<td>Case Series</td>
<td>N=6</td>
<td><strong>Intervention</strong>: Type of pain: neuropathic. Treatment: DREZotomy surgical procedure. <strong>Outcome Measures</strong>: Self-reported pain relief.</td>
<td>1. 4/6 patients reported complete pain relief; 2/6 reported 80% pain relief. 2. Two patients who had been using pain medication reported no longer needing them.</td>
<td></td>
</tr>
<tr>
<td>Rath et al. 1997</td>
<td>Germany</td>
<td>Case Series</td>
<td>N=23</td>
<td><strong>Intervention</strong>: Type of pain: neuropathic. <strong>Outcome Measures</strong>: Patients were asked to judge postoperative pain relative to preoperative pain (%).</td>
<td>1. Of the 23 patients who underwent the procedure, 11 were judged to have experienced good pain relief; the remaining 12 were said to have had a fair or poor result. 2. Better results were seen for those with ‘end-zone’ versus diffuse pain.</td>
<td></td>
</tr>
<tr>
<td>Sampson et al. 1995</td>
<td>USA</td>
<td>Case Series</td>
<td>N=39</td>
<td><strong>Intervention</strong>: Patients received Dorsal Root Entry Zone (DREZ) procedures from 1978 to 1992. <strong>Outcome Measures</strong>: Pain relief, as indicated by subsequent treatment and activity levels.</td>
<td>1. 21 of the 39 reported good results, while the remaining 18 reported fair results at a mean of 3 yr. 2. 30/39 had no post-operative complications.</td>
<td></td>
</tr>
<tr>
<td>Nashold et al. 1990</td>
<td>USA</td>
<td>Case Series</td>
<td>N=18</td>
<td><strong>Intervention</strong>: Patients who had a SCI and Dorsal Root Entry Zone (DREZ) procedures and drainage to remove cysts that had developed &lt;1 post injury. <strong>Outcome Measures</strong>: Pain relief, as indicated by subsequent treatment and activity levels.</td>
<td>1. 14/18 patients reported good pain relief with combined cyst drainage. 2. Good pain relief was defined as not requiring any analgesics and activities not limited because of pain.</td>
<td></td>
</tr>
<tr>
<td>Friedman &amp; Nashold 1986</td>
<td>USA</td>
<td>Case Series</td>
<td>N=56</td>
<td><strong>Intervention</strong>: Not Reported. <strong>Outcome Measures</strong>: Pain relief, as indicated by subsequent productivity levels.</td>
<td>1. 50% of patients reported good pain relief, 9% fair, 4% poor following DREZ procedure. 2. Better results were obtained for those with segmental versus diffuse pain.</td>
<td></td>
</tr>
</tbody>
</table>

**Discussion**

In the Falci et al. (2002) study, individuals were divided into two treatment groups: the first nine patients underwent DREZ micro-coagulation using recorded spontaneous neuro-electrical hyperactivity in as a guide; while the second group underwent DREZ micro-coagulation using both the recorded spontaneous and evoked hyperactivity as a guide. Individuals were followed up to six years post-surgery and pain was measured using the VAS. The study found that more participants (50% versus >80%) in the second group reported 100% pain relief than those in the first group.
Chun et al. (2011) reported on 38 individuals treated with the procedure, between 2003 and 2008. These individuals suffered from various types of neuropathic pain including segmental versus diffuse, mechanical versus thermal or a combination of both, and intermittent versus continuous pain. Previous management with medication had proven unsuccessful. After surgery, individuals were followed for a period ranging between 19 and 84 months (average of 42 months) to measure the degree of pain relief. At follow-up, individuals were asked to rate the intensity of their pain using the VAS. Pain relief was considered by the authors to be “good” if pain was reduced by more than 75%, “fair” if it was reduced by 25-75% and “poor” if pain was reduced less than 25%. Individuals with intermittent pain and continuous pain achieved high rates of good pain relief (78% and 80%, respectively).²

Notably, Nashold et al. (1990) reported 14 of 18 individuals (77%) with paraplegia who underwent cyst drainage and the DREZ surgical procedure reported pain relief following surgery. In general, approximately 50% or more of the patients across these case series achieved greater than 50% pain relief or experienced no pain-related activity limitations and no need for narcotics following the surgery (Friedman & Nashold 1986; Nashold et al. 1990; Rath et al. 1997; Sampson et al. 1995; Sindou et al. 2001; Spaic et al. 1999; Spaic et al. 2002). However, all of these were retrospective, uncontrolled reports with obvious methodological limitations, such as ill-defined eligibility criteria (i.e., potential selection bias) and inadequate outcome measurement which limits the generalizability of the results.

Conclusion

There is level 2 evidence (from one prospective controlled trial, one pre-post study, and seven case series studies; Falci et al. 2002; Chun et al. 2011; Sindou et al. 2001; Spaic et al. 1999, 2002; Rath et al. 1997; Sampson et al. 1995; Bashold et al. 1990; Friedman & Nashold 1986) to support the use of the DREZ surgical procedure to reduce pain post SCI. It may be that some populations (segmental pain) are more likely to benefit from this procedure.

DREZ surgical procedure reduces pain post SCI.

11.4 Sympathectomy

Sympathectomy is not recommended for pain following SCI (Nashold 1991). As mentioned previously, sympathetic blockade and sympathectomy have reportedly failed to relieve the central pain of SCI (Friedman & Nashold 1986; Melzack & Loeser 1978; White 1969).

11.5 Lateral Spinothalamic Tractotomy

Hazouri and Mueller (1950) described three selected cases of patients with intractable root pain, subsequent to severe trauma to the cauda equina which resulted in paraplegia (L2-4 lesions). All three patients demonstrated a distinct increase in the threshold for perception of pain and "an even more remarkable increase in the threshold for reaction to pain." Lateral spinothalamic tractotomy in all three of these patients resulted in complete relief from pain. Threshold studies subsequent to the tractotomy "revealed a striking return of perception and reaction thresholds to a normal range."
11.6 Spinal Cordotomy

This procedure can be performed openly or percutaneously. Anterior spinothalamic tracts subserving pain and temperature function are sectioned, often requiring a bilateral approach. Spinal cordotomy is an option but is rarely employed and there is little evidence that it works.
12.0 Summary

Pain following SCI is quite common. The most common type of pain post SCI is central or neuropathic in nature characterized by a dysesthetic, burning pain below the level of SCI. Borderzone or segmental pain is much less common; occurring along the border between normal and absent sensation. The precise etiology of central/neuropathic or borderzone segmental pain is not known. There is some evidence suggesting an association may exist between the central or neuropathic dysesthetic burning pain and abnormalities of the sympathetic nervous system. Musculoskeletal pain, either secondary to the original trauma or to overuse is both common and well understood. Unfortunately, the management of central or neuropathic pain remains difficult and largely ineffective.

For many SCI patients, pain has a significant impact on quality of life.

Over 50% of SCI patients develop chronic pain. Severe pain is more common the lower down the lesion in the spinal cord. Pain post SCI most often begins within the first 6-12 months post-SCI.

The most common types of pain post SCI are: 1) a burning pain (likely neuropathic) usually localized to the front of torso, buttock or legs or 2) an aching pain (likely musculoskeletal) usually localized to the neck, shoulders and back.

There is level 2 evidence (from one randomized controlled trial and one prospective controlled trial; Chase et al. 2012; Norrbrink & Lundeberg 2011) that massage therapy may not improve neuropathic and musculoskeletal pain intensity post SCI.

There is level 1b evidence (from one randomized controlled trial; Arienti et al. 2011) that osteopathy alone is not effective in improving neuropathic pain post SCI.

There is level 1a evidence (from two randomized controlled trials; Dyson-Hudson et al. 2001, 2007) that in general acupuncture is no more effective than Trager therapy or sham acupuncture in reducing nociceptive musculoskeletal shoulder pain post SCI.

There is level 1b evidence (from one randomized controlled trial; Yeh et al. 2010) that acupuncture and electroacupuncture reduces neuropathic pain of patients with SCI.

There is level 1b evidence (from one randomized controlled trial; Ginis et al. 2003) that a regular exercise program significantly reduces post-SCI neuropathic and musculoskeletal pain.

There is level 2 evidence (from one prospective controlled trial and one pre-post study; Nawoczenski et al. 2006; Serra-Ano et al. 2012) that a shoulder exercise protocol reduces the intensity of nociceptive shoulder pain post-SCI.

There is level 4 evidence (from one pre-post study; Finley & Rodgers 2007) that the MAGIC wheels 2-gear wheelchair results in less nociceptive shoulder pain.

There is level 2 and level 4 evidence (from one randomized controlled trial and one pre-post study; Jensen et al. 2009, 2000) that hypnosis reduces neuropathic and musculoskeletal pain intensity post SCI.
There is level 4 evidence (from one pre-post study; Jensen et al. 2013) that biofeedback may reduce neuropathic and musculoskeletal pain intensity post SCI.

There is level 2 evidence (from one prospective controlled trial; Perry et al. 2010) that a cognitive behavioural pain management program with pharmacological treatment may improve secondary outcomes among SCI individuals with chronic pain post SCI.

There is level 1b evidence (from one randomized controlled trial one prospective controlled trial, and one pre-post study; Heutink et al. 2012; Norrbrink et al. 2006; Burns et al. 2013) that cognitive-behavioural therapy alone does not change post-SCI pain intensity.

There is conflicting level 1b evidence (from one randomized controlled trial, a cohort study and two pre-post studies; Soler et al. 2010; Kumru et al. 2013; Gustin et al. 2008; Moseley 2007) that visual imagery may reduce at level neuropathic pain post SCI for a short period.

There is strong evidence level 1a evidence (from four randomized controlled trials; Capel et al. 2003; Fregni et al. 2006; Soler et al. 2010; Tan et al. 2006) for the benefits of transcranial electrical stimulation in reducing neuropathic and musculoskeletal post-SCI pain.

There is level 4 evidence (from one pre-post study; Panagos et al. 2004) that using a static field magnet helps to reduce reports of sharp, stabbing nociceptive shoulder pain but does not significantly reduce the VAS score of pain in individuals with a SCI.

There is level 4 evidence (from one case series study; Davis & Lentini 1975) that transcutaneous electrical nerve stimulation reduced at-the-injury site pain in only a minority of patients with thoracic or cauda equina SCI, but not those with cervical SCI.

There is level 1a evidence (from two randomized controlled trials; Jette et al. 2013; Defrin et al. 2007) that transcranial magnetic stimulation significantly reduced post-SCI neuropathic pain significantly over the long-term.

There is level 1a evidence (from two randomized controlled trials, and one case series, pre-post, and observational study; Levendoglu et al. 2004; Tai et al. 2002; To et al. 2002; Ahn et al. 2003; Putzke et al. 2002) that the Gabapentin and pregabalin improve neuropathic pain post SCI.

There is level 1b evidence (from one randomized controlled trial; Arienti et al. 2011) that combined pregabalin and osteopathy treatment improves pain post SCI.

There is level 4 evidence (from one pre-post study; Ahn et al. 2003) that the anticonvulsant Gabapentin is more effective when SCI pain is <6 months than >6 months.

There is level 1b evidence (from one randomized controlled trial; Finnerup et al. 2002) that lamotrigine improves neuropathic pain in incomplete spinal cord injury.

There is level 1b evidence (from one randomized controlled trial; Finnerup et al. 2009) that Levetiracetam is not effective in reducing neuropathic pain post SCI.
There is level 2 evidence (from one randomized controlled trial; Drewes et al. 1994) that valproic acid does not significantly relieve neuropathic pain post SCI.

There is level 1b evidence (from one randomized controlled trial; Rintala et al. 2007) that amitriptyline is effective in the treatment of post-SCI neuropathic pain in individuals only when there is concomitant depression.

There is level 1b evidence (from one randomized controlled trial; Vranken et al. 2011) that duloxetine may improve neuropathic pain post SCI.

There is level 1b evidence (from one randomized controlled trial; Davidoff et al. 1987b) that trazodone does not reduce post-SCI neuropathic pain.

There is level 1b evidence (from one randomized controlled trial; Loubser & Donovan 1991) that Lidocaine delivered through a subarachnoid lumbar catheter provides short-term relief of pain greater than placebo.

There is level 1a evidence (from two randomized controlled trials; Kvarnstrom et al. 2004; Eide et al. 1995) that intravenous Ketamine significantly reduces allodynia when compared to placebo.

There is level 1b evidence (from one randomized controlled trial; Chiou-Tan et al. 1996) that mexilitene (a derivative of lidocaine) does not improve SCI dysesthetic pain when compared to placebo.

There is conflicting level 4 evidence (from two case series studies and one pre-post study; Boviatsis et al. 2005; Plassat et al. 2004; Loubser & Akman 1996) that intrathecal baclofen reduces dysesthetic pain post-SCI.

There is level 4 evidence (from one pre-post study; Loubser & Akman 1996) that intrathecal baclofen reduces musculoskeletal pain post-SCI in conjunction with spasticity reduction.

There is level 4 evidence (from one case series study; Uchikawa et al. 2009) that motor point phenol block is effective in reducing short term spastic shoulder pain post SCI.

There is level 4 evidence (from one case series study; Marciniak et al. 2008) that local botulinum toxin injections to treat focal spasticity reduces pain.

There is level 1b evidence (from one randomized controlled trial; Attal et al. 2002) that intravenous morphine significantly reduces mechanical allodynia more than placebo.

There is level 1b evidence (from one randomized controlled trial; Norrbrink & Lundeberg 2009) that tramadol is effective in reducing neuropathic pain post SCI.

There is level 1b evidence (from one randomized controlled trial; Eide et al. 1995) that alfentanil reduces overall post SCI pain.

There is level 1b evidence (from one randomized controlled trial; Eide et al. 1995) that alfentanil is more effective at reducing wind up like pain than ketamine.
There is level 4 evidence (from one pre-post study; Barrera-Chacon et al. 2010) that oxycodone and anticonvulsants may be effective in improving SCI neuropathic pain.

There is conflicting level 2 evidence (from one randomized controlled trial; Hagenbach et al. 2007) for the use of delta-9-tetra hydrocannabinol in reducing spastic pain in SCI individuals.

There is level 2 evidence ((from one randomized controlled trial; Rintala et al. 2010) that dronabinol is not effective in reducing pain intensity post SCI.

There is level 1b evidence (from one randomized controlled trial; Siddall et al. 2000) that intrathecal clonidine alone does not provide pain relief greater than placebo.

There is level 2 evidence (from one prospective controlled trial; Uhle et al. 2000) that the combination of intrathecal morphine and clonidine provides pain relief greater than placebo.

There is level 4 evidence (from one case series study; Sandford & Benes 2000) that topical capsaicin reduces post-SCI radicular pain.

There is level 4 evidence (from one case series study; Ciono et al. 1995) that spinal cord stimulation improves post-SCI pain.

There is level 3 evidence (from one case control study; Livshits et al. 2002) to support the use of dorsal longitudinal T-myelotomy procedures, in particular Pourpre’s technique, to reduce spastic pain post SCI.

There is level 2 evidence (from one prospective controlled trial, one pre-post study, and seven case series studies; Falci et al. 2002; Chun et al. 2011; Sindou et al. 2001; Spaic et al. 1999, 2002; Rath et al. 1997; Sampson et al. 1995; Bashold et al. 1990; Friedman & Nashold 1986) to support the use of the DREZ surgical procedure to reduce pain post SCI. It may be that some populations (segmental pain) are more likely to benefit from this procedure.
References


Dunn M, Davis R. The perceived effects of marijuana on spinal cord injured males. Paraplegia 1974;12:175.


Munro D. The care of patients paralyzed as the result of injury to the spinal cord and cauda equina. Med Clin North Am 1948;32:91.


